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a b s t r a c t

The simulation of magnetocaloric refrigerator behaviour needs a good description of the

material properties. Magnetocaloric material data are often given as a function of few

values of the external magnetic field applied on a sample, but active material reacts to its

internal field. The simulating of the magnetocaloric effect using experimental data can

then create some artefacts. In this paper we present an alternative way to obtain material

data expressed as a function of the internal magnetic field. This characterization is built on

the knowledge of the zero magnetic field heat capacity of second-order phase transition

materials such as gadolinium, as well as on the direct measurements of magnetocaloric

data. An inverse approach is performed to calculate the data as a function of the internal

magnetic field with an improved level of detail. The obtained data allow a better modelling

of the magnetocaloric effect in an active magnetic regenerator.
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1. Introduction

TheMagnetocaloric Effect (MCE) achieved in variousmagnetic

materials can be used to build magnetic refrigeration systems

within different temperature ranges (Tishin and Spichkin,

2003). These systems are free of greenhouse gas and are also

potentially interesting from the point of view of energy effi-

ciency. Numerous prototypes have demonstrated the

feasibility of such systems using an Active Magnetic Regen-

erator (AMR) for applications around room temperature

(Vasile and Muller, 2006). These prototypes have indicated

different configurations and performance levels that can be

expected from pre-industrial devices (Zimm et al., 2006; Yu

et al., 2010). The simulation of magnetic refrigeration

systems is fundamental for optimizing their performances.

This allows implementing efficiently the MCE in order to be
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economically competitive compared to conventional refrig-

eration systems. Therefore this leads to the emergence of

numerical models increasingly detailed (Nielsen et al., 2011).

Some of thesemodels implement themagnetocaloric effect as

an instantaneous process due to a varying applied magnetic

field as a square. Consequently, it is necessary to distinguish

magnetocaloric data, the adiabatic temperature change (DTad),

according to the increasing or decreasing magnetic field to

ensure a model respecting the thermodynamic principles

(Nielsen et al., 2010).

2. Implementing progressive magnetization
in a model

In order to perform a better description of the magneto-

thermodynamic cycle covered by the Magnetocaloric Mate-

rial (MCM), it is important to simulate the magnetization and

the demagnetization as a progressive process and in

a continuous manner using numerous steps of magnetic field

values between the lower field and the higher field values

(Risser et al., 2010). The equation of heat for an AMR with

regular matrix, along the direction x of the thermal gradient

from the cold side to the hot side is given by:
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Where r is the density of the material, CH,p its heat capacity at

constant magnetic field and pressure, T its temperature and k

its thermal conductivity. _Qleak represents the heat leakages

due to the imperfect thermal insulation and _QHT is the heat

transfer between the thermal fluid and the material. _QMC is

corresponding to the generation of heat or cold from the

magnetocaloric effect. This term can be calculated from

adiabatic temperature change (vTad/vHi) or magnetic entropy

change (vSM/vHi) due to the varying of the internal magnetic

field Hi as it follows:
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In the AMR of a device, the variation of the magnetic field is

not instantaneous and it is not an adiabatic process either due

to the contact with the coolant fluid. A high precision of the

simulation, consistent with the principle of energy conserva-

tion for non adiabatic magnetization should be achieved

without distinguishing magnetocaloric data as a function of

the sense of the varying field. The discrete step of adiabatic

temperature change is determined as:

HiþdHi
Hi
dTadðTÞ ¼ HiþdHi

0DTadðTÞ � Hi
0DTadðTÞ (3)

where T is taken as the average temperature of the material

between Hi and Hi þ dHi. The accuracy of the model is strongly

dependant on the magnetic field step dHi during the magne-

tization phase and the demagnetization phase.

3. Impact of the demagnetizing field

Another relevant problem is revealed by the demagnetizing

field that requires making a difference between external

applied magnetic field and internal field that causes the mag-

netocaloric effect. Thedemagnetizing field is dependingon the

geometry and on the orientation of the volume of MCM rela-

tively to the magnetic field. Hence, for the same external

Nomenclature

Symbols

B induction (kg A�1 s�2)

C heat capacity (J kg�1 K�1)

D demagnetizing factor

H magnetic field (A m�1)

k thermal conductivity (W m�1 K�1)

M magnetization (A m�1)

n shape function parameter (�)

S entropy (J kg�1 K�1)

T temperature (K)

x position (m)

Q energy density (J m�3)

Abbreviations

AMR Active Magnetic Regenerator

AMRR Active Magnetic Regenerative Refrigeration

COP Coefficient Of Performance

MCE Magnetocaloric Effect

MCM Magnetocaloric Material

Greek symbols

D difference

d variation

m0 vacuum permeability (V s A�1 m�1)

r density (kg m�3)

s shape function or parameter (�)

k function of first order (�)

c shape parameter (�)

Subscripts

a parameters for the shape function

b parameters for the shape function

ad adiabatic

c Curie

d demagnetizing

e external

i internal

k summation parameter

leak leakage

p pressure

H magnetic field

HT heat transfer

M magnetic

MC magnetocaloric

0 close to zero

fus at fusion temperature
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