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In this study, a new approach for the auto-design of a neural network based on genetic

algorithm (GA) has been used to predict saturated liquid density for 19 pure and 6 mixed

refrigerants. The experimental data including Pitzer’s acentric factor, reduced temperature

and reduced saturated liquid density have been used to create a GA-ANN model. The

results from the model are compared with the experimental data, Hankinson and Thom-

son and Riedel methods, and Spencer and Danner modification of Rackett methods.

GA-ANN model is the best for the prediction of liquid density with an average of absolute

percent deviation of 1.46 and 3.53 for 14 pure and 6 mixed refrigerants, respectively.

ª 2008 Elsevier Ltd and IIR. All rights reserved.

Réseau neuronal utilisé afin de prévoir la densité
des frigorigènes purs et mélangés, à l’aide d’un
algorithme génétique
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1. Introduction

The refrigeration process is lowering the temperature in an

isolated sub system to some extent less than its surrounding

temperature. Chemical industries are the main customers of

refrigeration processes. In this respect, refrigeration cycles

use refrigerant fluids. The design of economically acceptable

low temperature refrigeration cycles requires accurate knowl-

edge of the thermodynamic properties of refrigerants, i.e.,

liquid density, vapor density, enthalpy of vaporization and

vapor pressure. Although there is a large body of experimental

data on refrigerants in the literature, the amount of
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experimental data is still incomplete and different data sets

are usually inconsistent.

There are many equations of state for refrigerants and

their mixtures in the literature. For the calculation of the

saturated liquid density of refrigerants, 4 equations of state

and 14 correlations have been examined and compared by

Nasrifar and Moshfeghian (1999). They have recommended

the Chain of Rotator Group Contribution (CORGC) equation

of state (Pults et al., 1989) as the best among the equations

of state and the fourth among 18 methods available for the

calculation of saturated liquid density of refrigerants. Also,

they have shown that Hankinson and Thomson correlation

(Hankinson and Thomson, 1979) is the best among the

correlations and Riedel correlation (Riedel, 1954) and modified

Rackett correlation by Spencer and Danner (1972) are the

second and the third.

Lugo et al. (2002) proposed a method to calculate some of

the thermophysical properties of aqueous solutions which

are used as secondary refrigerants. This method is based

on the excess function approach for determining freezing

points, densities, heat capacities, thermal conductivities

and dynamic viscosities. Scalabrin et al. (2003) proposed

a three-parameter density model based on corresponding

states technique as a means of predicting the density of

pure fluids and their mixtures. The studied fluids belong to

two conformal families of the new refrigerant fluids’ gener-

ation: the halogenated alkanes (HA) and the hydrofluor-

oethers (HFE). Sharafi and Boushehri (2005) extended the

ISM (Song and Mason, 1989) equation of state based on sta-

tistical mechanical perturbation theory to liquid refrigerant

mixtures by using correlations of Boushehri and Mason

(1993). The equation of state was tested on 33 liquid

mixtures from 12 refrigerants. Their results indicated that

the liquid densities can be predicted to an error percentage

of at the most 2.8 over a wide range of temperatures,

170–369 K.

Mafloon-Azad et al. (2005) examined an analytical equa-

tion of state for predicting density of some compressed

liquid HCFC and HFC refrigerants. The input data for their

equation of state were the liquid density and the heat of

vaporization at the boiling point. They used a version of

the ISM (Song and Mason, 1989) equation to predict the

volumetric behavior of the six refrigerants. Goharshadi and

Moosavi (2006) applied GMA (Goharshadi et al., 2005) EOS

for predicting density of a limited liquid refrigerant mixtures.

They concluded that GMA EOS provides a simple procedure

for prediction of thermodynamic properties of liquid

refrigerant mixtures especially for which the similar classes

of refrigerants are mixed.

Eslami et al. (2006) developed their previous works

(Eslami, 2000,2001; Eslami et al., 1999) on the equation of

state for refrigerants to their mixtures. The temperature-

dependent parameters of the equation of state have been

calculated using their previous corresponding states correla-

tion based on the normal boiling point temperature and the

liquid density at the normal boiling point. They have applied

a quadratic relation proposed by Nasrifar et al. (1999) for the

normal boiling point constants to extend their previously

proposed EOS to mixtures of refrigerants. Goharshadi and

Moosavi (2007) calculated the density of 11 hydrochlorofluor-

ocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants

using Goharshadi–Morsali–Abbaspour equation of state

(GMA EOS). Their results showed that GMA EOS is satisfac-

tory enough for predicting liquid density. However, to use

this EOS for a refrigerant, the six parameters must be known

by fitting to experimental data. Also, they used GMA EOS to

limited refrigerants.

Usually, the aforementioned correlations or equations of

state require the critical constants in addition to some other

adjustable parameters. The adjustment of these parameters

is tedious and it is never certain that the best set of parameters

has been obtained. The development of numerical tools, such

as neural networks, able to represent, within the experimental

uncertainties, and accurately predict, refrigerants’ properties,

reveals a promising approach to complete this task. Some

attempts have been made for calculating thermodynamic

properties of refrigerants using the artificial neural networks;

as an instance, Chouai et al. (2002) used ANN for PVT

representations of refrigerants from 240 to 340 K and up to

20 MPa. Results on three refrigerant compounds had been

presented, namely, R134a, R32 and R134a. In their work, for

both vapor and liquid phases, the neural models were devoted

to the computation of the compressibility factor (Z ), as a func-

tion of temperature and pressure. Then the derived properties

such as enthalpy, entropy and heat capacity were calculated

from Z as a function of temperature and pressure through

numerical derivatives. In another study, Laugier and Richon

(2003) repeated the work of Chouai et al. (2002) for six refriger-

ants. Sözen et al. (2007) developed an artificial neural network

(ANN) for determining the thermodynamic properties –

specific volume, enthalpy and entropy – of an alternative

refrigerant (R508b) for both saturated liquid–vapor region

and superheated vapor region. In their ANN, the back propa-

gation learning algorithm with two different variants, namely

scaled conjugate gradient (SCG) and Levenberg–Marqurdt

(LM), and logistic sigmoid transfer function were used to

determine the best approach. The most suitable algorithm

with appropriate number of neurons in the hidden layer was

found to be the LM algorithm. The results provided by the

regression analysis give R2 values in the range of 0.93–0.97

while they vary between 0.97 and 0.99 in the case where the

ANN is employed for the same purpose.

In the past decade, ANNs have been used intensively in

various fields. The major reason for this rapid growth and

diverse application of neural networks is their ability to

approximate virtually any function in a stable and efficient

way. In spite of the wide range of applications, neural

Nomenclature

AAPD average of absolute percent deviation

CORGC chain of rotator group contribution

EOS equation of state

N number of points

R2 regression constant

r linear correlation coefficient

Tr reduced temperature

r liquid density (mol/cm3)

u Pitzer’s acentric factor
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