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a b s t r a c t

Obviously, precautions against damage of components by operational and exceptional loads have to be
taken. This is performed according to the procedures and standards of the nuclear regulations, e.g. by
using the strength and fracture mechanical parameters (warranty parameters) of the involved materials.
Within this integrity proof by calculation, however, the effects of the uncertainties in the input
parameters cannot be evaluated quantitatively. By considering the possible parameter scatter in the
geometrical dimensions and loads while performing the integrity proof, the failure probabilities, and
hence the caused uncertainties, become quantifiable. In addition, postulated flaw sizes can be considered
and the effects of operational measures can be evaluated. This requires, on one hand, exact knowledge
about the scatter of the decisive parameters, and on the other hand knowledge about their effects on the
employed methods, and hence on the result of the calculation.

In this paper the applied reliability theory is described. Furthermore, the failure probabilities, espe-
cially of the weld joints of a feed water line, were calculated and the available partial safety factors were
analysed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Concerning the manufacturing and operation of safety relevant
power plant components, failure must be excluded reliably. For this
reason, conservative assumptions are made and adequate safety
factors are chosen for the design.

Even in cases inwhich component design is subjected to a purely
deterministic approach, a probabilistic analysis is of special value, as
it allows the actual safety reserves to be estimated quantitatively.

As soon as the statistical uncertainties are identified, the failure
probability or reliability of a component can be calculated. Thus,
instead of using subjective evidence (empirically determined safety
factors) to ensure structural integrity, one can now rely on objective
evaluation criteria based on a statistical analysis of the values of
interest, i.e. on partial safety factors.

Based on a flawless pipeline system, the failure probability of
a component can be simplified and expressed as a function of
the material state and the applied loads. A component fails if the
material resistance R is smaller than the applied load. Due to the
stochastic character of the parameters R and S it is necessary to
qualify objectively the required safety distance between the cor-
responding distributions. For this purpose, the so-called partial

safety factors must be determined, which can be used to guarantee
proper operation.

On calculating the partial safety factors using standard proce-
dures based on FORM/SORM, [1], one has to take into account the
drawbacks of the mathematical procedure behind: determining the
design point as the minimum distance in the parameter space may
not find the global, but rather a local optimum. Our contribution
shows, that the qualitative differences between solutions are not
negligible, even if the computed quantity is nearly the same. In
order to decide, which solution is the right one, additional infor-
mation and knowledge about the underlying system is needed.
Although the concepts from FORM/SORM are well-known, already
established and the topic of many other recent publications ([2e4]),
we emphasize, that the pure application of these methodsmay lead
to unexpected results. Of course, the issue of multiple MPPs (most
probable points) is known and there are efforts towards solving this
problem in a general manner, but finding the correct solution still
needs expert (engineering) knowledge, especially when solutions
have to be evaluated and compared together.

2. Probability of failure and safety index

In our further considerations to structural safety (see e.g. [5]), it is
assumed that the load S and material resistance R can be described
by the stochastic independent normal distributions N(mS, sS) and N
(mR, sR). Since the respective density functions are unbounded, an
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overlapping of the density functions cannot be avoided. Thus, there
is always an area for which R�S 0 is true, so that for this particular
case an absolute operational safety cannot be guaranteed. As shown
in Fig. 1, the overlapping area can be adjusted to fit the requirements
by reducing the variances and by modifying the average values of
loading or load capacity. Within this context, a differentiation is
made between the central and the nominal safety zone.

The central safety zone (see Fig. 1) is described as the distance
between the average values mS and mR.

In practice, the interest rather lies on the nominal safety zone,
i.e. the distance between the quantiles sQ and rQ, since this value
reflects the real distributions and genuinely describes the existing
safety reserves. Reducing the sQ and rQ uncertainties can increase
these safety reserves. As can be deduced from Fig. 1, the failure
probability decreases in case of sðIIÞS < sðIÞS . The stochastic variables
R and S can be put into a functional relationship, which makes it
possible to define the concept of a limit state.

G ¼ R� S ð1Þ
The area G < 0 thereby describes the failure region and G¼0

corresponds to the limit curve (surface). Since loading S andmaterial
resistance R are independent and normally distributed (as assumed
above), their difference is also normally distributed and it is:

mG ¼ mR � mS; sg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R þ s2S

q
(2)

The central safety zone thereby corresponds to the distance
between the average value mG and g¼ 0. This distance can be
specified as a multiple of the standard deviation sG, the so-called
safety index b (see Fig. 2). This safety index is equivalent to the
inverse variation coefficient of the limit state function:

b ¼ mG
sG

¼ mR � mSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R þ s2S

q (3)

The area beneath the density function for G � 0 corresponds to
the failure probability for the operating load and is therefore
denoted as the operating failure probability:

Pf ¼ PG<0 ¼ FGð0Þ ¼
Z0

�N

fGðgÞdg ¼ F

�
�mG
sG

�
¼ Fð�bÞ (4)

The reliabilitynowcorresponds to the survival probabilityandcan
be calculated as the complement of the operative failure probability:

Pr ¼ 1� Pf (5)

The operating failure probability Pf and the safety index b are
parameters, which are tied together by the standard normal
distribution, being hence equally adequate for reliability consider-
ations. Thereby it has to be considered that the failure probabilities
are only valid over a specific time period. Table 1 shows the change
of the safety index b and the operating failure probability Pf over
a period of time. The values of b presented here are the required
values needed in order to fulfill the given probability of failure for

Nomenclature

aR, aS weighting factors for sR and sS w.r.t. sG, resp.
b safety index
gR, gS partial safety factor of the applied load and resistance,

resp.
mR, mS, mG mean/expected value of R, S, G resp.
F(x) cumulative density function (cdf) of the standard

normal distribution
sR, sS, sG standard deviation of R, S, G, resp.
su ultimate tensile strength (MPa)
sy yield stress; the average of the 0.2% offset yield

strength sY, and the ultimate tensile strength (MPa)
a crack depth (mm)
c crack half-length (mm)
Do pipe outher diameter (mm)

fG(g), FG(g) probability density function, cumulative distribution
function of G, resp.

G stochastic variable, G R�S, limit state definition
Ji Rice Integral at crack initiation (kJm2)
KV impact energy ( J)
Kp,R, Kp,S quantile factors of R, S, resp.
Lr,max plastic collapse limit load
Mb (Level D) bending moment, service level D
Mb,max maximum bending moment, (kNm)
P internal pressure, (MPa)
Pf, PoF probability of failure
R, S stochastic variable for resistance, applied load, resp.
r, s resistance, applied load, resp.
rd, sd values of resistance, load at the design point, resp.
rQ, sQ Q -quantile of R, S, resp.
t wall thickness (mm)
t0 nominal wall thickness (mm)

Fig. 1. Definition of the safety zones and the effect of distribution adjustment on the
probability of failure, (a), Safety zones, (b), Distribution adjustment on the probability
of failure.
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