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Abstract

Risk assessments in the nuclear industry heavily depend on the study of system availability/reliability and component importance. To

do this study, the Monte Carlo simulation method is often a favorite selection since it involves no complex mathematical analysis,

especially when systems are so complex or large that deterministic methods are difficult to solve. However, when the importance of

components or the time behavior of availability/reliability of a system are required, running conventional Monte Carlo simulation alone

can be very tedious and time-consuming. An integrated analysis technique that can be used to obtain the entire information efficiently

and precisely in one calculation would be very desired by the system engineers. In this paper, we introduce the correlated sampling

techniques to incorporate with conventional Monte Carlo simulation to save engineer’s work as well as computing time.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the risk assessments in the nuclear industry
involve system availability/reliability evaluation and sys-
tem design optimization. Such work is often called as
system reliability studies. In system reliability studies, the
Monte Carlo simulation method involves no complex
mathematical analysis and therefore is often a favorite
selection, especially when systems are complex or large that
deterministic methods have difficulty to solve. While trying
to optimize a system design or to manage a system already
in operation, it is often required by the system engineer to
study the new system behavior many times, each time
giving a small change to the system parameter such as
component failure rate or repair rate, to obtain the
information of component importance and sensitivity,
system reliability and changed quantities. To do the work
using conventional Monte Carlo simulation techniques can
be very tedious and time-consuming. An integrated
analysis technique that can be used to obtain the entire
information efficiently and precisely in one calculation

would be very desired by the system engineers. Therefore,
we introduce the correlated sampling techniques to
incorporate with conventional Monte Carlo simulation to
fulfill the need of system engineers while doing the system
reliability studies.
In this paper, firstly we brief the conventional Monte

Carlo simulation method, then we introduce the scheme of
correlated sampling, at last we demonstrate the function of
Monte Carlo simulation incorporated with correlated
sampling scheme by applying this combination to study a
nuclear power plant system.

2. Monte Carlo simulation method

Monte Carlo simulation usually consists of building,
with a computer program, a probabilistic model of the
system under investigation. The model is then run through
a large number of trials (each trial represents one history of
the modeled system). From this all the information about
the system performance are retrieved.
In system reliability studies, the system will be modeled

as having discrete changes to the state of the components
(and hence the system) arising in the continuous time.
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Events in the time development of a system are treated like
neutron transport in a medium. For example, the transport
behavior of a system with three components can be
pictured as Fig. 1. The vector components in this figure
represent the operation states (‘‘1’’ represents ‘‘up’’ and
‘‘0’’ represents ‘‘down’’) of the components in the system.
Time-segments that constitute the history of a simulated
system are composed of ‘‘free-flight’’ periods (nothing
happens in that period) and ‘‘collisions’’ (one of the
components in the system changes its state, either fails or is
repaired) at the end of the free flight.

While simulating the system transport behavior using the
Monte Carlo simulation, we must pay attention to two
major aspects in each time segment. One is how long does
the system take to fly freely before having a collision;
another is what happens at the collision. Aside from these,
in system reliability studies, two other aspects need to be
catered too. These are

(1) Is the new system state after collision a newly failed
state or newly repaired state?

(2) Has the system passed the mission time (Tm)?

The current time of the system in simulation is the
cumulative time of individual free-flight time in the past.

2.1. Free-flight time

The individual free-flight time tk follows the stochastic
behavior of the system and is determined by generating a
random number x1 and is calculated as

tk ¼ � lnð1� x1Þ=ak, (1)

where tk is the free flight-time before making kth collision,
x1 is random number uniformly distributed in [0,1),
ak ¼

Pn
i¼1bi, is total change rate of the system before

making kth collision, here bi ¼ li (component failure rate,
if component is operational); or bi ¼ mi (component repair
rate, if component had failed); and n is the number of
components in the system.

2.2. Which component changes its state at collision

The component that will make a state change at the end
of a free flight is randomly chosen by generating another
random number x2 and comparing the following inequality

equation:

gn�1px2ogn, (2)

where x2 is another random number uniformly distributed
in [0,1); g0 ¼ 0, and gn ¼

Pn
j¼1bj=ak, n ¼ 1, 2, 3, y, the

sequential number of component.
As an example, if g2px2og3, it can be said that

component 3 has made a change at the end of the free
flight.

2.3. System operability judgment

All the system reliability indices with which we are
concerned are strongly relevant to the system operability.
This system operability is judged by checking the devel-
oped fault-tree. A fault-tree [1] can be simply described as
an analytical technique, whereby an undesirable state of
the system is specified, and the system is then analyzed in
the context of its environment and operation to find all
credible ways in which the undesirable event can occur.
The fault-tree itself is a logical model of the various parallel
occurrence of the predefined undesired event and also is a
complex of entities known as ‘‘gates’’, which serve to
permit or inhibit the passage of fault logic up the tree. The
gates show the relationships of events needed for the
occurrence of a ‘‘higher’’ event. A fault-tree thus depicts
the logical inter-relationship of basic events that lead to the
undesired event, which is the top event of the fault-tree.
In the Monte Carlo simulation, the system operability

will be checked each time that the system changes its state,
i.e., a collision occurs on the way of system transport. This
check-up goes through the fault-tree-logic developed for
the undesired event.

2.4. Estimation of the reliability indices

To evaluate the system mean time to failure Tf, since the
sum of the free-flight times at the end of history (system
failed after n collisions) is the failure time of the system (tf)j
for that simulated j-history, then the average failure time
after tracing N histories will be the mean time to failure of
the simulated system, i.e.,

T f ¼
1

N

XN

j¼1

ðtf Þj. (3)
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Fig. 1. Transport of a three-component system.
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