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a b s t r a c t

An analysis of a two-phase composite component under time-dependent heat flux is presented. The

fundamental thermoelastic solution is obtained in terms of complex potentials via the technique of the

analytical continuation in order to satisfy the continuous conditions on the interface. The hereditary

integral associated with the Kelvin–Maxwell model is applied to simulate the thermoviscoelastic

properties while a thermorheologically simple material is considered. Based on the correspondence

principle, the Laplace transformed thermoviscoelastic solution is directly determined from the

corresponding thermoelastic one. The real-time solution can then be solved numerically by taking

inverse Laplace transform. Some typical examples of interface stresses induced by various time-

dependent heat flux are discussed. Finally, the solution of a crack embedded in the bi-material subjected

to a uniform heat flux is also discussed.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The stress analysis of a two-phase material under time-
dependent thermal load has become an important topic because
of the increasing use of composite materials in many engineering
applications. Various authors [1,2] derived the appropriate forms
of free energy and the corresponding stress–strain relations and
dissipation energy for a thermorheologically simple material from
the view point of irreversible thermodynamics. For thermovis-
coelastic analysis, because of the complexity, most results
reported in the literatures are found in numerical approximation
[3–5]. In this paper, an analytical method to investigate the
thermoviscoelastic behavior of a bonded dissimilar media sub-
jected to thermomechanical loading is presented. The fundamen-
tal methodology of solving the thermoelastic problem is extended
to solve the thermoviscoelastic problem.

In a rectangular coordinate system xi (i ¼ 1, 2, 3), let qi, T, eij, ui,
and sij be the heat flux, temperature, strain, displacement, and
stress, respectively. The complete set of governing equations for
uncoupled thermoelastic problems involving homogeneous but
anisotropic materials are [6]

qi ¼ �kijT ;j (1)

qi;i ¼ �kijT ;ij ¼ 0 (2)

�ij ¼ ðui;j þ uj;iÞ=2 (3)

sij ¼ cijkl�kl � bijT ¼ cijkluk;l � bijT (4)

sij;j ¼ cijkluk;lj � bijT ;j ¼ 0 (5)

where

kij ¼ kji; cijkl ¼ cjikl ¼ cijlk ¼ cklij; bij ¼ bji

are the coefficients of heat conduction, anisotropic elastic
constants and stress–temperature coefficients. The general
solutions of temperature field T, total heat flux Q, displace-
ment derivatives u0 and tractions t on the x2 plane for a
homogeneous thermoelastic medium can be represented by a
complex temperature function y(z) and a complex stress function
f(z) as [6–8]

T ¼ yðzÞ þ ȳðz̄Þ (6)

Q ¼ kyðzÞ þ k̄ȳðz̄Þ (7)

u ¼ Af ðzÞ þ Āf̄ ðz̄Þ þ dyðzÞ þ d̄ȳðz̄Þ (8)

t ¼ Lf ðzÞ þ L̄f̄ ðz̄Þ þ cyðzÞ þ c̄ȳðz̄Þ (9)

where

k ¼ k21 þ mtk22 (10)
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and the anisotropic elastic constants are [7,8]

L ¼

�m1 �m2 �m3Z3

1 1 Z3

�Z1 �Z2 �1

2
64

3
75; A ¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75 (11)

with

A11 ¼ s11m2
1 þ s12 � s16m1 þ Z1ðs15m1 � s14Þ

A21 ¼ s21m1 þ s22=m1 � s26 þ Z1ðs25 � s24=m1Þ

A31 ¼ s41m1 þ s42=m1 � s46 þ Z1ðs45 � s44=m1Þ

A12 ¼ s11m2
2 þ s12 � s16m2 þ Z2ðs15m2 � s14Þ

A22 ¼ s21m2 þ s22=m2 � s26 þ Z2ðs25 � s24=m2Þ

A32 ¼ s41m2 þ s42=m2 � s46 þ Z2ðs45 � s44=m2Þ

A13 ¼ Z3ðs11m2
3 þ s12 � s16m3Þ þ s15m3 � s14

A23 ¼ Z3ðs21m3 þ s22=m3 � s26Þ þ s25 � s24=m3

A33 ¼ Z3ðs41m3 þ s42=m3 � s46Þ þ s45 � s44=m3

Z1 ¼ � l3ðm1Þ=l2ðm1Þ; Z2 ¼ �l3ðm2Þ=l2ðm2Þ

Z3 ¼ �l3ðm3Þ=l4ðm3Þ (12)

where em ¼ smnsn+amT, (m, n ¼ 1, 2, 6), mt is the root of the
characteristic equation of conductivity with positive imaginary
part, and mi(i ¼ 1, 2, 3) are the roots of the sixth-order
characteristic equation of anisotropic compliance with positive
imaginary part [6–8]. An over bar denotes the conjugate of a
complex and all boldface notations indicate vector form except
special statement. Moreover, f(z) can be treated as the homo-
geneous solution and y(z) be the particular solution of the
thermoelastic problem. Those functions will be determined
exactly by means of satisfying the prescribed boundary condi-
tions. The subscripts of z are dropped for the convenience. Once
the solution is obtained for a given boundary value condition, a
replacement of z1, z2, z3 or zt should be made for each component
function to calculate field quantities, such as stresses, displace-
ments or temperature. Note that the general solution is only valid
when the thermal eigenvalue is different from the elastic
eigenvalues. For the case that they are repeated, a small pertur-
bation of the material constants can be employed to precede the
degenerate problem.

2. Temperature field of dissimilar media

First, consider two bonded half-plane media occupying in the
domain Db(x240) and Dc(x2o0), respectively. The solution of
singularities in a bi-material problem can be directly solved from
the solution of the singularities in an infinite homogeneous
medium by using the technique of analytical continuation.
Suppose the singularities, designated as y0(z) for the same
singularities embedded in an infinite homogeneous medium, are
taken to be in the lower half-space of the bi-material. Then the
solution of each medium can be represented as

yðzÞ ¼
y1ðzÞ; z 2 Db

y0ðzÞ þ yc1ðzÞ; z 2 Dc

(
(13)

where y1(z) and yc1(z) are the corresponding analytical functions
in the regions Db and Dc, which are induced by the singular
function y0(z). Assume the bonding of the interface to be perfect,
so that the temperature and the total heat flux across the interface
must be continuous. It requires that

y1ðx1Þ þ ȳ1ðx1Þ ¼ yc1ðx1þÞȳc1ðx1Þ þ y0ðx1Þ þ ȳ0ðx1Þ

kb½y1ðx1Þ� þ k̄b½ȳ1ðx1Þ� ¼ kc½yc1ðx1Þ þ y0ðx1Þ�

þ k̄c½ȳc1ðx1Þ þ ȳ0ðx1Þ� (14)

By the standard analytic continuation arguments it follows
that

y1ðzÞ ¼ ȳc1ðzÞ þ y0ðzÞ; z 2 Db

ȳ1ðzÞ ¼ yc1ðzÞ þ ȳ0ðzÞ; z 2 Dc (15)

and

kby1ðzÞ ¼ k̄c ȳc1ðzÞ þ kcy0ðzÞ; z 2 Db

k̄bȳ1ðzÞ ¼ kcyc1ðzÞ þ k̄c ȳ0ðzÞ; z 2 Dc (16)

Uncoupling Eqs. (15) and (16), we obtain

y1ðzÞ ¼ Pbcy0ðzÞ; z 2 Db

yc1ðzÞ ¼ L̄bcȳ0ðzÞ; z 2 Dc (17)

with

L̄bc ¼
k̄b � k̄c

kc � k̄b

and Pbc ¼
kc � k̄c

kb � k̄c

(18)

Eq. (17) give the complete temperature solution. This relation to
construct a bi-material solution from a one-material solution is
universal in that no specific information about the singularity is
needed. Furthermore, the solution can be solved in the same
method if the singularity is embedded in the upper half-space (Db)
or a singularity in a half-space interacting with a thermally
insulated surface.

3. Stress field of dissimilar media

Considering an isolated singularity in the lower half-space (Dc),
the stress function of the bi-material can be represented as

f ðzÞ ¼
f 1ðzÞ; z 2 Db

f 0ðzÞ þ f c1ðzÞ; z 2 Dc

(

where f1(z) and fc1(z) are the corresponding analytical functions in
the regions Db and Dc, which are induced by the singular function
f0(z). Assume the bonding of the interface to be perfect, so that the
displacement derivative and the traction across the interface must
be continuous. It leads

Lbf 1ðx1Þ þ cbybðx1Þ þ þL̄b f̄ 1ðx1Þ þ c̄bȳbðx1Þ ¼ Lcf c1ðx1Þ

þ ccycðx1Þ þ L̄c f̄ c1ðx1Þ þ c̄c ȳcðx1Þ þ Lcf 0ðx1Þ þ ccy0ðx1Þ (19)

and

Abf 1ðx1Þ þ dbybðx1Þ þ Āb f̄ 1ðx1Þ þ d̄bȳbðx1Þ ¼ Acf c1ðx1Þ

þ dcycðx1Þ þ Āc f̄ c1ðx1Þ þ d̄c ȳcðx1Þ þ Acf 0ðx1Þ þ dcy0ðx1Þ (20)

Similarly, by the standard analytic continuation arguments, it
becomes

Lbf 1ðzÞ þ cbybðzÞ ¼ L̄c f̄ c1ðzÞ þ c̄c ȳcðzÞ; z 2 Db (21)

L̄b f̄ 1ðzÞ þ c̄bȳbðzÞ þ Lcf c1ðzÞ þ ccycðzÞ; z 2 Dc (22)

and

Abf 1ðzÞ þ dbybðzÞ ¼ Āc f̄ c1ðzÞ þ dbybðzÞ; z 2 Db (23)

Āb f̄ 1ðzÞ þ d̄bȳbðzÞ ¼ Acf c1ðzÞ þ dcycðzÞ; z 2 Dc (24)

Uncoupling Eqs. (21)–(24), we obtain

f 1ðzÞ ¼ Ubcf 0ðzÞ þ f tðzÞ (25)

f c1ðzÞ ¼ V̄bc f̄ 0ðzÞ þ f̄ ctðzÞ (26)

with

f tðzÞ ¼ b0bcy0ðzÞ þ b1bc þ ybðzÞ þ c̄2bcȳcðzÞ

f̄ ctðzÞ ¼ c̄0bcȳ0ðzÞ þ c̄1bc þ ȳbðzÞb2bcycðzÞ (27)
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