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a b s t r a c t

A three-dimensional continuum based micromagnetic model is developed to simulate the magnetization
process in polycrystalline thin films and address the influence of crystallographic texturing, grain size
and the substrate-induced strain on the spontaneous domain structure and hysteresis curves of NiFe2O4

and CoFe2O4 thin films. The model employs the LandaueLifshitzeGilbert equation along with mechanical
equilibrium and Gauss' Law for magnetism to calculate the temporal and spatial distributions of the
magnetic moments. Thus, this approach falls within the category of phase-field methods used for non-
conserved systems. The finite element method is used to solve the partial differential equations in fully
coupled fashion while using a different discretization method for each equation. The results demonstrate
how the magnetization process is altered by adopting different microstructural orientations revealing
stronger sensitivity in CoFe2O4 thin films than in NiFe2O4 thin films. Moreover, it is shown that the
substrate-induced compressive strain favors in-plane magnetization, whereas the tensile strain switches
the easy axis from the in-plane to the out-of-plane direction. The validity of the model is verified by
comparing the results with recently published experimental data for sol-gel deposited NiFe2O4 thin
films.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Since its introduction in the 1960s [1], the continuum theory of
micromagnetics has been widely used to capture the complex
magnetization processes in various material systems at the meso-
scale. The computational micromagnetics is based on discretizing
the continuum magnetic media into sub-micrometer cells and us-
ing an equation of motion for magnetic mediumwithin those cells.
Gauss' Law formagnetism is then used to explain themagnetostatic
interactions of the magnetic moments with each other and with
external magnetic field. Modern micromagnetics uses the Lan-
daueLifshitzeGilbert (LLG) equation first developed in 1935 [2],
and later modified by Gilbert in 1956 [3], as the equation of motion.
It also uses the balance law of linear momentum to account for the
inhomogeneous local stress distribution caused by the elastic in-
compatibility of the magnetostrictive strain [4].

Micromagnetic modeling, even without consideration of

magnetoelastic coupling, falls into the class of phase-fieldmodeling
used over the past two decades to solve similar problems involving
mobile sharp interfaces [5,6]. The LLG equation takes the same role
as the evolution equation in phase-field methods and predicts the
evolution of the interfaces, i.e. the motion of the magnetic domain
walls. In fact, the LLG equation can be classified as an Allen-Cahn
type equation used for predicting the kinetics of non-conserved
fields [6].

The magnetization field vector with its constant magnitude is
the order parameter of the evolution equation inmicromagnetics. It
orients itself uniformly within the magnetic domains and contin-
uously changes its direction across the domain walls. Similar to
other phase-field models, a free energy functional couples the or-
der parameter to other field variables such as strain and magnetic
field. This is a polynomial functional describing the total energy of
the system; an integral representation of the magnetization vector,
its derivatives, and other field variables that are all functions of
geometry, material properties, temperature, etc.

The LLG equation in phase-field micromagnetics is accompanied
by two other fundamental balance law equations for stress and
magnetic field. Incorporating the free energy functional into these
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equations leads to set of equations that describe the temporal and
spatial distribution of the magnetization vector for a given
magneto-mechanical boundary condition.

Phase-field micromagnetics has been employed in various
studies of ferro/ferri-magnetic materials including thin films
[4,7e9]. Due to its meso-scale and multiphysics nature, micro-
magnetic simulations are computationally expensive and hence
most simulations are restricted to nanostructures or two-
dimensional cases. With the improvement in the computational
resources, more sophisticated problems have been simulated
recently which include strain-mediated switching [10e12], elec-
trically induced magnetization [13,14], ferromagnetic shape-
memory alloys [15,16], exchange coupling [17], and more [18]. At
the same time, new numerical techniques are being adopted to
lower the computational cost and expand the horizon to larger
scales [19].

Although the crystallography of the magnetic films are known
to have significant effect on the magnetic behavior of the films, it
has received little attention from the micromagnetics community
and most studies are limited to monocrystalline films. In the few
cases considering polycrystallinity, the simulation was simplified
[20e22] or the focus was only on the final equilibrium domain
structure rather than the hysteretic behavior [23]. Similarly, the
literature suffers from the lack of a comprehensive study on the
effect of substrate-induced strain. In the few available studies
concerned with the substrate-induced strain, the hysteresis
behavior was not included [24,25].

The purpose of this study is to develop a three-dimensional
phase-field micromagnetic model to analyze the magnetic
behavior of polycrystalline thin films. The model utilizes the
formulation proposed by Landis [26] and incorporates it into finite
element code COMSOL Multiphysics. The goal is to develop a
comprehensive design tool for predicting the effect of crystallo-
graphic texturing, grain size, and substrate-induced strain on the
spontaneous and hysteretic behavior in thin films. Nickel ferrite
(NiFe2O4) and cobalt ferrite (CoFe2O4) are selected for this study
due to their range of interesting physical properties such as room
temperature ferrimagnetism and small gap insulation. To evaluate
the validity of the model, the obtained results are compared with
recently published experimental data for sol-gel deposited NiFe2O4
films [27,28].

2. Model development

2.1. Free energy functional

The free energy functional for phase-field micromagnetic
modeling is a state function for magnetization derived from con-
tinuum thermodynamics and crystal symmetry considerations.
Assuming the temperature is constant and well below the Curie
temperature it can be written as:

h ¼ h
�
εij;Hi;mi;mi;j

�
(1)

where the primary field variables are the strain field tensor εij,
magnetic field vector Hi, magnetization unit vector (also known as
direction cosines) mi, and its gradient mi,j. Standard index notation
with summation convention over repeated indices is used
throughout this paper. The indices are running over the range of
1e3. The comma in the subscript denotes partial differentiation
with respect to spatial coordinate xi.

Under the assumption of linear kinematics, the strain tensor in a
material body can be calculated from mechanical displacement ui.

εij ¼
1
2
�
ui;j þ uj;i

�
(2)

The magnetic field and magnetization unit vector are related to
the magnetic field Bi, via

Bi ¼ m0ðHi þMsmiÞ (3)

m0 is the permeability of the free space and Ms is the saturation
magnetization. The magnetic field can be expressed as the gradient
of the magnetic scalar potential f.

Hi ¼ �f;i (4)

Assuming constant saturation magnetization

mi ¼
Mi

Ms
(5)

whereMi are the components of themagnetization field vector. The
modulus of the magnetization vector is assumed to be constant and
equal to the saturation magnetization. Therefore, it is more
convenient to use the magnetization unit vector as the primary
order parameter.

The total free energy density functional for phase-field micro-
magnetics modeling consists of contributions from magneto-
crystalline anisotropy energy haniso, exchange energy hexch, elastic
energy helastic, and magnetostatic energy hmagnetostatic. The compe-
tition between these four energy terms defines the magnetic state
of the material:

h ¼ haniso þ hexch þ helastic þ hmagnetostatic (6)

The magnetocrystalline anisotropy energy arises because the
magnetization process depends on the crystallographic directions.
Ignoring the higher order terms, the magnetocrystalline anisotropy
energy for cubic symmetry is

haniso ¼ K1

�
m2

1m
2
2 þm2

1m
2
3 þm2

2m
2
3

�
þ K2

�
m2

1m
2
2m

2
3

�
(7)

Here K1 and K2 are denoted as the first and second anisotropy
constants. Depending on their sign and magnitude, Eq. (7) creates
energy wells that favor certain magnetization directions.

The exchange energy or gradient energy is related to the inho-
mogeneous distribution of the magnetization and originates from a
short-range interaction between magnetic moments while tending
to keep them parallel. The mathematical expression is defined as
the square of the spatial gradient of the magnetization directions:

hexch ¼ Aexch

�
m2

1;1 þm2
1;2 þm2

1;3 þm2
2;1 þm2

2;2 þm2
2;3 þm2

3;1

þm2
3;2 þm2

3;3

�
(8)

where Aexch is the exchange stiffness constant.
The elastic energy arises from deformations due to the effect of

inhomogeneous magnetostriction. The compatibility of the strain
field requires that the magnetostrictive strains be accompanied by
elastic strains. The resultant elastic energy contains a positive term
for pure elastic strains and a negative term for quasi-plastic
magnetostrictive strains [29].

helastic ¼
1
2
Cijkl

�
εij � ε

m
ij

��
εkl � ε

m
kl

� ¼ 1
2
Cijkleijekl (9)

where Cijkl is the fourth order elastic stiffness tensor, εij is the pure
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