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ABSTRACT

The design of shape memory alloys (SMA) demands detailed knowledge of their thermodynamic
properties and of the underlying atomic-level mechanisms governing their shape-memory behavior. This
knowledge is traditionally obtained via atomistic simulations, but these systems have so far resisted such
efforts due to the presence of phonon instabilities and associated spontaneous symmetry breaking. In
this study, we investigate the thermodynamics of PtTi, a novel and promising SMA (and of the related
better-known NiTi SMA, for comparison purposes) using recently developed first-principles computa-
tional method specifically designed to tackle this issue. The method efficiently explores the system's
potential energy surface by discrete sampling of local minima, combined with a continuous sampling of
the vicinity of these local minima via a constrained harmonic lattice dynamic approach. Our calculations
provide a complete and atomic-level-based model for these compounds' free energy and shed some light
on the ongoing search for the precise structure of dynamically stabilized high temperature phases in

SMAs.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There has been an ongoing effort to devise a thermodynamic
framework for the mechanically unstable phases that can get sta-
bilized due to lattice dynamics at high-enough temperatures. These
mechanical instabilities are common among a number of solid-
state systems, such as many transition metals [1], shape-memory
alloys [2], refractory oxides [3] and ferroelectric materials [4]. The
ongoing challenge in describing such material phases is that they
lack a single representative stable crystal structure. We have
addressed this challenge by developing a method called Piecewise
Polynomial Potential Partitioning or P* method [5], which enables
the free energy calculation of such phases. In the P* method, we
describe the material's structure by dynamic fluctuations between
the “local low-symmetry distortions” of the“high-symmetry
structure”, which provides stabilizing entropy contributions. Our
method divides the problem of anharmonic energy model into
simpler piecewise harmonic models by partitioning the phase
space into relevant subregions. Introducing an augmented lattice
implicitly splits phase space into corresponding subregions and
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enables the use of coarse-graining of the partition function along
with a cluster expansion approach. Here, we present the thermo-
dynamic properties for NiTi and PtTi, which represent two exam-
ples of mechanically unstable system with different anharmonicity
strengths. The agreement of the thermodynamic properties ob-
tained in this study with experimental measurements confirms the
validity of our method and sheds some light on the ongoing search
for the austenite phase of NiTi.

When considering the phase stability and thermodynamics of
crystalline systems, finite-temperature lattice vibrations become
crucial. The standard lattice dynamics frameworks, such as (quasi)
harmonic approximation, provide an accurate description of lattice
dynamics for studying harmonic vibrations in a solid [6]. However,
these frameworks become less valid as the system deviates from an
ideal harmonic solid, specially for mechanically unstable systems.
This is due to the unavailability of a single representative me-
chanically stable crystal structure. In this case, the energy surface
becomes non-convex along unstable modes and introduces
nonphysical divergence in the calculation of the harmonic free
energy.

A number of solutions have been devised so far in order to tackle
the issue of lattice dynamics of anharmonic solids, (and the related
problem of mechanically unstable phases [7—9]). Some of these
solutions include self-consistent lattice dynamics approaches
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[10,11], thermodynamic integration approaches [12,13], and effec-
tive Hamiltonian approaches [14—17]. While these approaches have
proven promising to handle anharmonic vibrations and are widely
used, they are not devoid of drawbacks. Self-consistent lattice dy-
namics methods rely on the assumption of the existence of an
effective harmonic model, and hence the accuracy of these models
cannot be systematically improved for strong anharmonic systems.
Thermodynamic integration approaches employ brute-force ab
intio molecular dynamics to calculate the anharmonic free energy
using (quasi)harmonic calculations as a reference. As a result, they
become computationally demanding when the anharmonicity is
strong, especially so strong that it creates multiple local minima
around a local high-symmetry maximum [18]. In effective Hamil-
tonian methods, constructing a parameterized Hamiltonian to the
energy surface can becomes demanding for strongly anharmonic
degrees of freedom, or for systems with complex unit cells. A
detailed comparison of the P* method with other existing ap-
proaches is provided in Section 3.

Shape memory alloys have a lot of technologically important
applications, including mechanical actuator devices and medical
stents [19]. The underlying mechanism of the so-called “shape-
memory” effect behavior is the martensitic transformation be-
tween a high-temperature austenite phase and a low-temperature
martensite phase [20]. The existence of soft modes and instabilities
in the austenite phase in SMAs initiates the martensitic trans-
formation. NiTi (nitinol) is the most widely used material among
many practical applications of SMAs, with martensitic trans-
formation temperature of about 366.15K [21]. On the other hand,
PtTi has attracted considerable attention as a promising potential
candidate for the basis of high temperature SMAs [22—24], due to
its higher transformation temperature of about 1273 K [22]. Both
PtTi and NiTi exhibit a high-temperature austenite phase with cubic
B2 structure (CsCl structure with space group Pm3m) [25—27],
transformed to a low-temperature martensite phase with ortho-
rhombic B19 (space group Pmma) [22], and monoclinic B19’
structure (space group P2;/m) [28], respectively.

The experimental observation of (i) a set of radial diffuse streaks
(i.e. a continuum of scattered X-rays that fall between the Bragg
peaks) and (ii) a set of discrete reflection spots at 1/3 position of the
regular B2 reciprocal lattice, for the X-ray diffraction of single-
crystal NiTi [29,30], caused an ongoing dispute over the structure
of the austenite phase for ordered NiTi. These observations led
Wang et al. to assume that the austenite structure is basically a
statistical distribution of lower-symmetry 3 x 3 x 3 superlattice of
ordinary B2 lattice [space group P3m1], which on average appears
as CsCl structure [29]. Later, Sandrock et al. attributed the observed
radial streaks to lattice vibrations present in the ordinary B2
structure, reflecting incipient instability of the lattice [30]. Recently,
Zarkevich et al. proposed a mechanically stable austenite phase
that is described by a hexagonal lattice [31], which appears B2 on
average in diffraction, while it has large atomic displacements from
the ideal B2 sites. In this paper, we illustrate in detail that how the
description of the mechanically unstable austenite NiTi by dynamic
fluctuations among local distortions provides a better insight about
the structure of the austenite phase and explains the reversible
appearance and disappearance of radial streaks and discrete 1/3
reflections observed experimentally upon cooling and heating
around the martensitic transformation temperature.

2. Results
2.1. Piecewise polynomial potential partitioning

The “dynamical stabilization” of the high symmetry phase with
mechanical instabilities at high enough temperatures is due to

entropy contributions arising from constant hopping among low-
symmetry distortions of the high symmetry structure. From this
perspective, the high symmetry structure is only one of the possible
configurational states that the system can access, along with mul-
tiple low-symmetry configurational states that are accessible to the
system. In order to take these states into account in the free energy
calculation, an augmented lattice, denoted by Layg, is constructed
including the high symmetry point and low-symmetry distortions
as the basis. Introducing the augmented lattice partitions the
configuration space into different configurations, denoted by o.

A coarse-grained form of the Helmholtz free energy associated
with the augmented lattice, Fy ., is considered as the following
[32].

F,, =—kgTIn Y e fF (1)
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where § = 1/kg, T is temperature, kg is Boltzmann's constant, X is a
3N vector of all atomic positions, N is the number of atoms in the
system, {, is the proximity of configuration ¢, and V(x) is the po-
tential energy of the system at a state represented by the position
vector X.

The constrained vibrational free energy, denoted by F, in
equation (2), takes into account the entropy contributions arising
from local vibrations in the vicinity of each distortion, while the
entropy contributions due to the hopping of the system among
local distortions is accounted for in the “outer” level integration of
equation (1). We use a local constrained harmonic model of po-
tential energy V(x) expanded about x7, defined as the location of
the minimum within ,, for the calculation of the “inner” level free
energy contributions in equation (2) and a lattice gas model for the
calculation of the free energy in equation (1).

In the lattice gas model, we use the cluster expansion formalism
in order to represent the constrained vibrational free energy as a
polynomial series in terms of the occupation variable of each lattice
site i, denoted by ¢;. For an ordered compound (and not a solid
solution), there is no permutation of different atomic species, thus
the same occupation variable can be used for all atom types.
Therefore, o; = +1 if site i is occupied and ¢; = —1 if site i is empty,
and cluster expansion formalism is represented as the following.
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The above sum is over symmetrically distinct clusters «, while
the average is over clusters «, which are symmetrically equivalent
to a. Ns is the number of sites in the augmented lattice, m,, is the
multiplicity of cluster « and ], (T) is the effective cluster interaction
(ECI) of cluster « at temperature T [33]. The ECIs, which are the
polynomial coefficients, are determined via the fitting of the above
series to the ab initio calculated F; at different temperatures.

Thermodynamic integration is used to obtain the Helmholtz free
energy difference between the high temperature limit and a
desired temperature T. Here, ensemble-averaged constrained
vibrational free energy (F*) changes is integrated over instead of
ensemble-averaged enthalpy changes, in order to incorporate the
local vibration contributions to entropy. The closed-form expansion
of Eq. (3) is used to calculate the ensemble-averaged constrained
vibrational free energy in the thermodynamic integration, utilizing
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