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a b s t r a c t

We present a three-dimensional (3D) formulation of the multiscale Dendritic Needle Network (DNN)
model for dendritic microstructure growth. This approach is aimed at simulating quantitatively the
solidification dynamics of complex hierarchical networks in spatially extended dendritic arrays, hence
bridging the scale gap between phase-field simulations at the scale of a few dendrites and coarse-grained
simulations on the larger scale of entire polycrystalline structures. In the DNN model, the dendritic
network is represented by a network of branches that interact through the solutal diffusion field. The tip
velocity V(t) and tip radius r(t) of each needle is determined by combining a standard solvability con-
dition that fixes the product r2V and a solute flux conservation condition that fixes the product rV2 in 2D
and rV in 3D as a function of a solutal flux intensity factor F (t). The latter measures the intensity of the
solute flux in the dendrite tip region and can be calculated by contour (2D) or surface (3D) integration
around the tip of each needle. We first present an extended formulation of the 2D DNN model where
needles have a finite thickness and parabolic tips. This formulation remains valid for a larger range of tip
P�eclet number than the original thin needle formulation and is readily extended to 3D needles with
paraboloidal tips. The 3D DNN model based on this thick-needle formulation is developed for both
isothermal and directional solidification. Model predictions are validated by comparisons with known
analytical solutions that describe the early transient and steady-state growth regimes. We exploit the
power of the DNN model to characterize the competitive growth of well-developed secondary branches
in 3D on the scale of the diffusion length. The results show that the length of active secondary branches
increases as a power law of distance behind the tip with an exponent in good quantitative agreement
with experimental measurements. Finally, we apply the model to simulate the three-dimensional
directional solidification of an Al-7wt% Si alloy, which we directly compare to observed microstruc-
tures frommicrogravity experiments onboard the International Space Station. The predictions of selected
microstructural features, such as dendrite arm spacings, show a good agreement with experiments. The
computationally-efficient DNN model opens new avenues for investigating the dynamics of large den-
dritic arrays at length and time scales relevant to solidification experiments and processes.

Published by Elsevier Ltd on behalf of Acta Materialia Inc.

1. Introduction

Dendritic microstructures are the most common among cast
metals and alloys [1,2]. The geometrical features of these structures
arise from a subtle interplay between microscopic interfacial phe-
nomena and macroscopic solute and heat transport, and are crucial
to mechanical properties of a cast part, and subsequently to its
performance during service [1,3,4]. Within a grain, interactions

among individual dendritic branches determine its inner structure,
such as the primary spacing crucial for the mechanical strength of a
dendritic grain. In polycrystalline microstructures too, long range
interactions between the growing dendrites play a key role in
shaping the grain structure that critically influences themechanical
properties of a material. Hence, our ability to understand, predict,
and control the microstructure selection mechanisms across all
critical length and time scales is key to develop innovative mate-
rials and processes.

At the scale of an entire solidification process or experiment,
computational approaches include continuum models [5e8],* Corresponding author.
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models based on dynamics of average dendritic grain enveloppes
[9e13], and approaches coupling cellular automata with finite el-
ements [14e16], finite differences [17], or Lattice Boltzmann
methods [18,19]. This type of models can be used at the scale of a
dendritic array to investigate mechanisms of intragrain [17] or
intergrain [20] microstructure selection up to the scale of entire
casting experiments, thus providing average statistical predictions
of microstructure selection by complex phenomena such as the
columnar-to-equiaxed transition [21]. However, those volume-
averaged equilibrium-based models do not resolve quantitatively
the transient interactions between individual dendritic branches
that are crucial to dendritic microstructure selection.

At a smaller scale, the phase-field (PF) approach is themethod of
choice to quantitatively simulate complex solid-liquid interface
patterns [22]. The theoretical development of the thin-interface
limit [23,24] and the anti-trapping current for alloy solidification
[25e27], combined with advanced numerical techniques such as
adaptive meshing [28,29] and massive parallelization [30,31], now
enable quantitative PF predictions at the scale of spatially extended
three-dimensional arrays of cells [32,33] and dendrites [34,35].
However, quantitative predictions of dendritic growth dynamics
with PF require an accurate morphological description of each
dendrite tip, which makes simulations extremely challenging for
concentrated alloys that usually solidify as a hierarchical network of
thin branches with several orders of magnitude separating the
scale of a dendrite tip radius and the larger scale of diffusive
transport in the melt.

In order to bridge the scale gap between phase-field and coarse-
grained models, we recently developed a multiscale Dendritic
Needle Network (DNN) approach that quantitatively predicts the
dynamics of individual branches in complex dendritic networks
during alloy solidification at a scale much larger than the diffusion
length. This model, first developed in 2D [36,37], is rigorously valid
as long as the dendrite tip P�eclet number remains relatively small,
which is the case for many common processing conditions. Hence,
the approach is well suited to describe concentrated alloys where
dendrites form hierarchical tree-like structures with several gen-
erations of needle-like branches.

In this approach, a dendritic grain, such as the crystal in Fig. 1a
[38], is modeled as a network of thin needles, as in Fig. 1b. The
dynamics of each needle tip is prescribed by two conditions that
jointly determine the evolution of its velocity V(t) and radius r(t).

The first condition is a solute conservation equation formulated
at an intermediate scale much larger than the dendrite tip radius r
and much smaller than the diffusion length D/V, with D the solute
diffusion coefficient in the liquid (Fig. 1c). In 2D, this condition links
the product rV2 to a flux intensity factor F (t) that measures the
strength of the incoming solute flux at the tip [36]. The value ofF (t)
can be calculated using a contour integral around the tip, e.g. in
Ref. [36] using the J-integral classically used in fracture mechanics
to compute stress intensity factors at the tip of a crack [40].

The second condition, formulated at the scale of the dendrite tip
(Fig. 1d), is a standard microscopic solvability condition for the
existence of a solution to the shape-preserving growth of a
parabola/paraboloid. It relates the product r2V to the strength of
surface tension anisotropy [41e43]. While r2V remains constant in
the DNN model, the flux intensity factor F (t) at each needle tip
evolves with the surrounding solutal field, hence enabling the
approach to capture long-range diffusive interactions between
branches in both transient and steady-state growth regimes.

The DNN model derives its efficiency from the fact that the
solid-liquid interface is not explicitly tracked and that the diffusion
field can be discretized on a scale comparable to or larger than r. In
comparison, phase-field typically requires a computational grid
size one order ofmagnitude smaller than the tip radius for a reliable

morphological description of the dendrite tip and hence of its
growth dynamics [24,44]. This leads to DNN simulations faster than
PF simulations by four to five orders of magnitude in 2D and 3D,
respectively, if both models are discretized on a finite-difference
grid using an explicit time stepping.

In this article, we present a three-dimensional formulation of
the DNN model. In Section 2, we summarize the sharp interface
solidification problem and the two-dimensional model as pre-
sented in Ref. [36]. Then, we propose a new 2D formulation for
thick branches with parabolic tips. This thick-needle formulation
has the dual benefit that it increases the range of tip P�eclet number
where the DNN approach is quantitatively valid and that it can be
readily extended to 3D where branches have paraboloidal tips. We
provide details of our first numerical implementation in Section 3.
In Section 4, we validate the DNN predictions through comparisons
with analytical solutions in a steady-state growth regime and with
an analytical scaling law for the early stage transient growth of an
equiaxed 3D grain with six branches growing along principal
crystal axes. In Section 5, we compare the predicted dynamics of
secondary sidebranches against experimental measurements of
dendritic envelope shapes. Then, in Section 6, we apply the DNN
model to a fully three-dimensional directional solidification
experiment of an Al-7wt% Si alloy, and directly compare the results
to microgravity experiments performed in the framework of the
CETSOL project [45e47] (Columnar-to-Equiaxed Transition in SO-
Lidification Processing). Finally, in Section 7, we summarize our
results and discuss further investigations made possible by this
new modeling approach.

2. Modeling

2.1. Sharp-interface solidification model

We consider the solidification of a binary alloy in a purely
diffusive regime with negligible diffusion in the solid phase, such
that the solute concentration c in the liquid follows the diffusion
equation

Fig. 1. The Dendritic Needle Network model represents a dendritic grain, like the
ammonium-bromide crystal from Ref. [38] in (a), as a hierarchical network of needle-
like branches interacting through the long range diffusion field, as illustrated in (b).
The instantaneous tip radius r(t) and velocity V(t) of each branch is established by
combining two conditions at distinct length scales: (c) a solute conservation condition
at an intermediate scale larger than the tip radius r, but smaller than the diffusion
length D/V (indicated with the [r and ≪D/V scale bar labels, respectively), and (d) a
solvability condition at the scale of the tip radius r.
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