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a b s t r a c t

The thermodynamic extremal principle was applied to model of diffusion-controlled phase-trans-
formations in multi-component substitutional alloys, in which dissipations by interface migration and
trans-interface diffusion were integrated for a sharp interface. In the modeling, a new concept of trans-
interface diffusion in two-steps, i.e. from the product phase to the interface and from the interface to the
parent phase, was introduced, ascribing to which the model follows the Onsager's reciprocal relation. In
contrast to the work of Svoboda et al. (2004) that considers only the interfacial dissipation by interface
migration, non-equal jumps of chemical potentials across the interface are herein allowed. Applications
to the FeeCreNi and FeeNi alloys showed that the model is able to describe accurately not only the
kinetic processes of massive transformation and diffusive transformation but also the critical limit be-
tween them. Since the transformation direction is not a priori condition for model calculations, the
model is of potential value in applications to the cases in which the migrating direction changes, e.g.
cycle phase-transformations etc.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion-controlled phase-transformations (e.g. the austenite-
ferrite (g-a) transformation [1,2], precipitation [3] and eutectoid
transformation [4] in steels) have been studied extensively due to
their technological importance in determining the microstructure
features and the mechanical properties of materials [5]. For
diffusion-controlled phase-transformations, two kinds of dissipa-
tion processes happen at the interface, i.e. interface migration and
trans-interface diffusion [6e9]. Although the dissipation processes
exist in both the diffusive transformation (DT) and the massive
transformation (MT), their transformation characteristics are
significantly different [10e14].1 The critical limit between DT and
MTwas debated in the past and its location is now regarded to be in
the two-phase field [14,15]. The model for diffusion-controlled

phase-transformations therefore should be able to describe not
only the kinetic processes of DT and MT but also the critical limit
between them.

One kind of the most widely used models is the solute-drag
model with a thick interface [16e23]. Based on the description
of binding forces between solute atoms with the migrating
boundary, Cahn [16] did the pioneering work. Hillert and Sundman
[17] then introduced the concept of Gibbs free energy dissipation,
according to which they derived the dissipations by interface
migration and trans-interface diffusion. After that, Odqvist et al.
[18,19] proposed a continuum model in which the interface con-
ditions are determined by balancing the total driving free energy
with the dissipations by interface migration and trans-interface
diffusion. Such a Gibbs free energy balance approach [18,19] was
applied recently to the transition between equiaxed ferrite and
bainite ferrite in the FeeCeMo and FeeCeMn alloys [20].
Following a similar idea, Zurob et al. [21] developed the model
with a discrete interface in which trans-interface diffusion is
consist of three-steps, i.e. from the product phase to the interface,
within the interface and from the interface to the parent phase.
Such a model predicted well the kinetics of ferrite precipitation
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1 MT according to Massalski [11] is a composition invariant and interface-
controlled phase transformation, whereas, DT with a much slow and gradually
decrease velocity is controlled by bulk diffusion [13].
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and decarburization in the FeeCeNi, FeeCeMn, FeeCeMo,
FeeCeCo and FeeCeSi alloys [21,22]. Despite of its successful
applications, the solute-drag model depends strongly on the as-
sumptions of interface properties and its applicability to the
practical multi-component alloys is limited [1].

Another choice for modeling of diffusion-controlled phase-
transformations is the sharp interface model. Based on the Gibbs
free energy diagram, Hillert et al. [6e9] discussed the case of a
binary alloy in which two independent dissipation processes
happen, i.e. interface migration and trans-interface diffusion. If
only diffusion in the parent phase is considered, the solute molar
fraction transferred across the interface is the same as that of the
product phase at the interface [6,9]. If diffusion in both phases is
considered, the solute molar fraction transferred across the
interface is dependent on other interfacial variables, e.g. the
growth velocity and the solute flux of product phase [7,8]. The total
molar driving free energy and the dissipation by trans-interface
diffusion for the two cases are different but not the dissipation
by interface migration [7,8]. The flux of trans-interface diffusion in
both cases is equal to the solute flux of parent phase at the inter-
face [8,24]; see Appendix A. Another work one should pay atten-
tion to is from Aziz et al. [25,26], which aims to model of rapid
solidification by the absolute chemical reaction theory. In the case
of linear thermodynamics and with only diffusion in the parent
phase, the model of Aziz et al. [25,26] is comparable with that of
Hillert et al. [6e9]. Although the sharp interface model [6e9,24,25]
is independent of the assumptions of interface properties, the
interface conditions are determined by the evolution equations
that relate the fluxes and their conjugate driving forces in a
phenomenological way [27,28] and it is not convenient to be
extended to multi-component alloys with complex additional
constraints.

Recently, the thermodynamic extremal principle (TEP) [29,30]
has been developed to be a handy tool for modeling of complex
thermodynamic systems with complex additional constraints. So
far, it has been successfully applied to diffusion and creep [31e33],
precipitation [34,35], grain growth and coarsening [36e39], rapid
solidification [24,40] etc. Since TEP is able to solve the complex
additional constraints and derive the evolution equations in a
strict mathematical and physical way, it should be a good choice
for modeling of diffusion-controlled phase-transformations in
multi-component alloys. Regarding it, Svoboda et al. [41e44] car-
ried out a series of work. In their sharp interface model [41], only
the dissipation by interface migration was considered for the
interface and the condition of equal jumps of chemical potentials
across the interface was re-derived. Because the dissipation by
trans-interface diffusion is not considered, MTcan be only found in
the one-phase field [44]. In their solute-drag model with a thick
interface [42,43], both interface migration and trans-interface
diffusion are considered within the interface and the jumps of
chemical potentials across the interface are not equal, thus
allowing MT occur in the two-phase field [43]. Integrating the
work of Hillert et al. [6e9] and Svoboda et al. [41e43], one may
speculate that the sharp interface model of Svoboda et al. [41] is
also able to predict the occurrence of MT in the two-phase field if
both dissipations by interface migration and trans-interface
diffusion are considered.

Following Svoboda et al. [41], a model for diffusion-controlled
phase-transformations in multi-component substitutional alloys
is derived by TEP in which the dissipations by interface migration
and trans-interface diffusion are integrated for a sharp interface

(Sec. 2). Following Zurob et al. [45,46], a new concept of trans-
interface diffusion in two-steps, i.e. from the product phase to
the interface and from the interface to the parent phase,2 is
introduced. Consequently, the model follows the Onsager's recip-
rocal relation and does not need to distinguish the migrating di-
rection during calculations, indicating that it should be preferred
for the cases in which the migrating direction changes upon
transformations, e.g. cycle phase-transformations [47e49]. In Sec.
3, the model is applied to the FeeCreNi alloy and the different
transformation characteristics of DT and MT are shown. Since the
jumps of chemical potentials across the interface are allowed to be
unequal, the location of the critical limit between DT and MT is
found in the two-phase field. Adopting an appropriate parameter
for trans-interface diffusion, the experimental results in the FeeNi
alloy [15] are well predicted (Sec. 4). Finally, the current work is
summarized in Sec. 5.

2. Model derivation

2.1. Problem descriptions

A closed system is set for the g / a diffusion-controlled phase-
transformation. The position of the assumed planar interface is ZI.
The coordinate of the boundary between the a (g) phase and the
surroundings is ZL (ZR). The growth velocity of the migrating
interface is V. At each side of the interface, there are n þ 1 substi-
tutional components. The superscript “0” (“i” (i ¼ 1,2,…,n)) in the
following section stands for the solvent (solute) and the superscript
“*” stands for the variables at the interface. The mass conservation
law at the interface is:

Ji*g � Ji*a ¼ V
Vm

�
Ci*
g � Ci*

a

�
; ði ¼ 1;2; :::; nÞ; (1)

where Ji*a and Ji*g are the solute fluxes, Ci*
a and Ci*

g are the solute
molar fractions, and Vm themolar volume is assumed to be same for
all the substitutional components in the system. The molar Gibbs
free energy of the phase is:
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p; ðp ¼ a;gÞ; (2)

where Ci
p and mip are the solute molar fraction and the chemical

potential, respectively.

2.2. Total Gibbs free energy and its rate

The total Gibbs free energy of the system is given as:
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It should be noted that there is no contribution from the inter-
face energy due to the assumption of a planar interface, which
means that the total interface energy is constant and does not in-
fluence the change rate of total Gibbs free energy. The local mass
conservation in the bulk phases is:

vCi
p

vt
¼ �VmVJip; ðp ¼ a;g; i ¼ 1;2; :::;nÞ: (4)2 In the case of a sharp interface, there is no diffusion within the interface as well

as its dissipation.
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