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a b s t r a c t

Wedevelopa statistical-mechanicalmodel ofone-dimensionalnormalgraingrowth thatdoesnot require any
drift-velocity parameterization for grain size, suchasused in the continuityequationof traditionalmean-field
theories. The model tracks the population by considering grain sizes in neighbour pairs; the probability of a
pair having neighbours of certain sizes is determined by the size-frequency distribution of all pairs. Accord-
ingly, the evolution obeys a partial integro-differential equation (PIDE) over ‘grain size versusneighbour grain
size’ space, so that the grain-size distribution is a projection of the PIDE's solution. This model, which is
applicable before as well as after statistically self-similar grain growth has been reached, shows that the
traditional continuity equation is invalid outside this state. During statistically self-similar growth, the PIDE
correctly predicts the coarsening rate, invariant grain-size distribution and spatial grain size correlations
observed in direct simulations. The PIDE is then reducible to the standard continuity equation, andwe derive
an explicit expression for the drift velocity. It should be possible to formulate similar parameterization-free
models of normal grain growth in two and three dimensions.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Normal grain growth (NGG) refers to the gradual increase of the
mean grain or crystal size x of a polycrystalline material, as grain-
boundary motion causes larger grains to consume smaller grains
and small grains to be eliminated. For over five decades, NGG has
been studied as a fundamental process affecting texture evolution
in metals and geological materials [1,2], and more broadly in
connection with coarsening dynamics (e.g. soap-bubble growth) in
various physical, social and biological systems; e.g. [3e6]. It is
observed that, at large time t, NGG obeys the growth law

x � ðCtÞm (1)

(where the grain-growth exponent m and bulk growth rate C are
positive constants), with the frequency distribution n(x, t) of the
grain size x tending to a statistically quasi-stationary, or ‘invariant’,
self-similar state. For NGG in two- and three-dimensional (2D and
3D) polycrystals with uniform grain boundaries, whose migration
rate is curvature-driven, a parabolic growth law with m ¼ 1/2 has
been established through theoretical considerations [7,8] and nu-
merical simulations (e.g. [9e12]), and finds support also from

laboratory experiments [13] (see discussion in Ref. [1]).
Statistical mean-field theories have been instrumental for

explaining how such coarsening arises from grain-scale kinetics un-
der the space-filling constraints that grains do not overlap and no
voids appear as grain boundaries move. These theories describe the
process by regarding each grain as embedded in the mean environ-
ment of the population [1]. In the Hillert-Mullins -type “driftmodels”
[14,15], the grain-size distribution n obeys the continuity equation

vn
vt

þ v

vx
ðvnðx; tÞÞ ¼ 0; (2)

where the drift velocity v (¼ dx/dt) represents grain exchange be-
tween different sizes. One would expect that, in a grain system
where the rules of grain-boundary migration and associated to-
pological reorganization are all known or prescribed, the evolution
can be tracked by a ‘complete’ statistical-mechanical model based
on nothing besides the rules, i.e. not involving extraneous as-
sumptions or approximations informed by the actual outcomes of
the NGG dynamics. This means that, if Eq. (2) is a valid model, then
a self-contained recipe for the velocity v ought to exist (and
hopefully can be found). However, as outlined below, all current
models invoke some kind of parameterization for v: thus there is a
knowledge gap.E-mail address: f.ng@sheffield.ac.uk.
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The purpose of this paper is to provide a mean-field model for
NGG in 1D that is complete in the above sense. The model takes the
form of a partial integro-differential equation (PIDE), not a partial
differential equation. We detail its derivation, explore its relation-
ship with Eq. (2) and compare its predictions to direct simulations
of the system. As Mullins [15] explained, Eq. (2) stems from a
Fokker-Planck formulation and contains no diffusion term (unlike
as envisaged in Louat's model [16]) when the growth process is
dominated by curvature-driven grain boundary motion rather than
stochastic switching events in grain size or network topology. Our
work tackles the same regime.

Hillert's [14] original parameterization for the drift velocity is

v ¼ ak
�
1
xc

� 1
x

�
; (3)

where xc is a time-varying critical grain size (f x), k is the product
of grain-boundary energy and mobility, and a is an order-one
parameter that varies with the number of spatial dimensions in
the system. Eq. (3) summarizes the tendency that grains larger than
xc grow and smaller than xc shrink; it assigns a single drift velocity
to grains of equal size, even though such grains are neighboured by
grains of different sizes so they do not grow or shrink at the same
rate. By using techniques of the Lifshitz-Slyozov-Wagner [17,18]
theory for coarsening dynamics in solid solutions, Hillert pre-
dicted long-time parabolic growth with Eqs. (2) and (3) and
calculated the corresponding invariant grain-size distribution.
However, since his work, shortcomings of the model has spurred
many ‘modified’ mean-field models seeking to improve the
parameterization. A first key shortcoming is that Hillert's invariant
grain-size distribution mismatches the invariant distributions
found in direct 2D and 3D simulations; e.g. [9e11,19,20]. A second
issue, exposed also by simulations, is that “spatial grain size cor-
relations” develop as NGG occurs [21e23], with small grains
becoming neighboured by more large grains than expected from
n(x, t) (which is not surprising because the former grains have lost
material to the latter), and large grains neighboured by more small
grains than expected from n(x, t) (the former grains have gained
material from the latter). This finding conflicts with the idea behind
Eq. (3) that different-sized grains evolve under the same environ-
ment. Approaches to modify Hillert's drift-velocity parameteriza-
tion include: (i) pre-multiplying 1/xc in Eq. (3) by an empirically-
tuned function f(x/xc) so that the effective critical grain size xc/f
varies with x to mimic observed neighbour-size correlations
[21,22,24]; and (ii) using topological considerations to formulate
alternative functions to link v to the reduced grain size x/x (e.g.
[25e30]). Some of the latter approaches deduce the rate of grain
area/volume evolution by accounting for the topological class
(number of sides) of the grains (e.g. [30]) and invoke the von
NeumanneMullins 2D growth law [31,32] or its 3D extension [33].
Still other models track the grain-size distributions in different
topological classes with separate continuity equations [34,35],
although they are not usually considered as being of Hillert-Mullins
type. We do not review the large number of modified Hillert the-
ories here but point the reader to the paper by Ref. [36] for further
background. Crucially, all modified theories contain adjustable
parameters/coefficients that are determined through fitting to the
observed dynamics (typically the invariant grain-size distribution).
The model derived in this paper has no such necessity.

We seevalue in investigating aparameterization-free theory. The
modified Hillert theories have engendered a tradition of invoking
parameterizations to “close” the mean-field description. Such
approach is useful because an ansatz posed for the resulting model
often yields an analytical solution that can be evaluated straight-
forwardly for the invariant grain-size distribution. But

parameterizations sacrifice physical understanding of the phe-
nomenon, as the basis of some parameters involved remains
incompletely known (their values do not derive from first princi-
ples), and both themodel and its fit to the observed invariant grain-
size distribution are ultimately approximate. The choice of param-
eterization is also not unique; more parameters could mean higher
degrees of freedom for empirical fitting, and different parameteri-
zations can predict parabolic growth with near-identical-looking
invariant n(x,t). Some modified theories even assume self-
similarity for n as a starting condition. As we shall see, our PIDE
model has none of these limitations and captures collaborative
grain-growth dynamics to a sophisticated level: it predicts the
observed neighbour grain-size correlations, similarity scaling,
invariant grain-size distribution, and relationship between k and the
bulk growth rate C without parameter tuning. The PIDE also tracks
system evolution outside the self-similar state. It is not analytically
solvable by us so far, but this does not mean it is invalid or inap-
propriate.1 We are not suggesting that a ‘complete’ formulation is
superior to the Hillert-based approximatemodels, but rather it is an
essential part of our knowledge of NGG. Note that our model treats
NGG in one dimension only. However, the insights gained from it
suggest there is hope for completemean-field formulations for NGG
in 2D and 3D, despite vastly increased topological complexities. We
consider this avenue briefly at the end of the paper.

2. Model

2.1. One-dimensional NGG system

Fig. 1a shows our system, in which a large population of linear
crystals/grains, whose sizes we denote by x (> 0), participates in
NGG. Following previous work [37,21,24] we assume (by analogy to
curvature-driven kinetics in 2D/3D) that each grain boundary be-
tween adjacent grains migrates into the smaller grain at a speed
proportional to the difference between their size reciprocals 1/x.
Thus a grain of size x0 having left and right neighbours sized x1L and
x1R (respectively) grows at the instantaneous rate

_x0 ¼ k
��

1
x1R

� 1
x0

�
�
�
1
x0

� 1
x1L

��
; (4)

where k (constant) has the same meaning as in Eq. (3). A grain
vanishes when two grain boundaries merge. Although this
analogue system is an idealization as there are no curved grain
boundaries in 1D, its reduced geometrydgrains always having two
sides, the only switching events being grain-boundary mer-
gingdaids our goal of seeking analytical understanding. (In this
regard, even 2D models of NGG lose some of the topological
complexity of NGG in 3D.) Moreover, as found by Refs. [21,24] and
confirmed by our direct kinetic simulations (Fig. 1bee), the 1D
system displays the essential properties of NGG behaviour: its grain
population coarsens following parabolic growth and attains an
invariant self-similar n(x, t) at large time (Fig. 1bee).

Spatial grain size correlations occur in this 1D system also, as
reported by Hunderi and his colleagues [21,24]. These authors put
forward a modified Hillert model using Approach (i) described in
the Introduction, i.e.

v ¼ 2k
�
f ðx=xcÞ

xc
� 1

x

�
; (5)

1 Many valid models describing complex phenomena without resorting to pa-
rameterizations have not yielded to analytical solution.
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