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Abstract

By exploiting the strain gradient crystal plasticity theory put forward by [Bardella, L., 2006. A
deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dis-
locations. Journal of the Mechanics and Physics of Solids 54, 128–160], we show that a modelling
involving only energetic material length scales through the defect energy (i.e., a function of Nye’s dis-
location density tensor added to the free energy; see, e.g., [Gurtin, M.E., 2002. A gradient theory of
single-crystal viscoplasticity that accounts for geometrically necessary dislocations. Journal of the
Mechanics and Physics of Solids 50, 5–32]) may not be enough in order to describe the size effect
exhibited by metallic components. In fact, strain gradients that enter the constitutive modelling by
taking Nye’s tensor as an independent kinematic variable allow the description of the increase in
strain hardening accompanied with diminishing size, but they do not help in capturing the related
strengthening; such a size effect can be instead qualitatively described by incorporating (in a stan-
dard, phenomenological way) the gradient of the plastic slip (rate), as a further independent kine-
matic variable, in the isotropic hardening function that provides the resistance to flow on each
slip system (Bardella, 2006). In this way, (at least) one dissipative length scale L is introduced in
the modelling, and its presence may even lead to a change in the ‘‘higher-order’’ (i.e., non-standard)
boundary conditions to be imposed in the inherent boundary value problems. By making use of a
simple example that, by taking a proper limit, also provides isotropic plasticity, we explicitly show
how the nature of the relevant boundary value problems changes whether L is set to zero or not, and,
by analysing the modelling capability, we give an insight on the influence of the crystallography and
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conclude that it is recommendable that at least one dissipative length scale be always incorporated in
the modelling.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

We wish to investigate on the role of different length scales which can be included as
material parameters into the strain gradient modelling of crystal plasticity. These material
length scales are necessary for dimensional consistency when strain gradients enter the the-
ory, and, in crystal plasticity based on a continuum description of the dislocation behav-
iour, are supposed to govern the processes that, in the range spanning from a few
hundreds of nanometers to a few tens of micrometers, as experimentally observed,1 lead
to the size effect concerned here, with smaller being stronger.

Assuming that for monotonic loading the deformation theory context provide results
close to those obtainable by means of the more appropriate flow theory counterpart,2

we exploit the deformation theory of strain gradient crystal plasticity put forward by
Bardella (2006), whose rate theory counterpart, as shown in Section 2, corresponds to
an extension of the small strain modelling proposed by Gurtin and co-workers (see,
e.g., Gurtin and Needleman, 2005). In Gurtin’s crystal plasticity strain gradients are
accounted for by an addition to the free energy called the defect energy, that is a function
of Nye’s dislocation density tensor (Nye, 1953), a kinematic variable useful to describe the
peculiar size effect due to geometrically necessary dislocations (GNDs) (Ashby, 1970). This
may allow one to model the variation, due to changing size, of the strain hardening and of
the features of the boundary layers of plastic strain, but it seems unsuitable in order to
capture the strengthening accompanied with diminishing size; this phenomenon can
instead be described by adding a further strain gradient dependence, as proposed by Bard-
ella (2006). It just consists of the analogous of the standard extension employed by many
authors in the context of isotropic plasticity3 in order to introduce strain gradients in the
definition of the equivalent strain (rate) measure to be employed in the isotropic hardening
function. In particular, in the deformation theory context, we assume that the flow resis-
tance encountered by the glide c(a) on the slip system a be dependent upon the amount of
‘‘effective’’ plastic slip, whose definition involves the gradient of c(a)

cðaÞeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcðaÞÞ2 þ L2cðaÞ;i cðaÞ;i

q
8a ð1Þ

where L is a material length scale.

1 See, e.g., Stelmashenko et al. (1993), Fleck et al. (1994), Stölken and Evans (1998), Sun et al. (2000), and
Aifantis et al. (2006).

2 See, e.g., Budiansky (1959) and, for the gradient case, Fleck and Hutchinson (2001), Qiu et al. (2003), Fleck
and Willis (2004), and Tsagrakis et al. (2006).

3 See, e.g., Fleck and Hutchinson (2001), Gudmundson (2004), Fleck and Willis (2004), and Gurtin and Anand
(2005).
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