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a b s t r a c t

A mean field description of particle coalescence and Ostwald ripening is presented. The inclusion of
particle coalescence events is shown to influence the evolution of the size distribution function and the
time taken to reach the steady state particle coarsening regime. Nearest neighbour functions are used to
represent the spatial arrangement of particles within multi-modal particle radius distributions and to
calculate the frequency of coalescence events. The impact of particle coalescence upon long term
coarsening kinetics has been studied. By tracking the evolution of a unimodal and bimodal dispersions in
phase space, it is demonstrated that coalescence affects the paths of particle dispersion towards the
steady state particle coarsening regime as well as the time scales to reach it.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical response of precipitate strengthened alloys are
significantly influenced by the size and spatial distribution of the
embedded particle phase. At high temperatures the dispersion is
unstable, with particle growth rates driven by the minimisation of
the free energy. During Oswald ripening, kinetics of particle
coarsening are driven by the minimisation of the interfacial energy
between the particle and matrix phases. This phenomena was first
treated by Greenwood [1] and later expanded into a comprehensive
mean field theory by Lifshitz and Slyozov [2] andWagner [3] (LSW)
for dilute particle dispersions in a binary alloy. LSW coarsening
theory predicts the existence of an attractor (steady) state for the
particle radius distribution. Once such a state is attained LSW
theory predicts scaling laws for the temporal evolution of the
moments of the particle size distribution: the cubed mean particle
radius increases linearly with time and the concentration of par-
ticles decreases linearly with time.

Over the last forty to fifty years, there has been a considerable
effort on the extension of LSW coarsening theory to describe par-
ticle kinetics in engineering precipitate strengthened materials.
Progress has been made in linking the chemical composition of

alloys to coarsening kinetics through CALPHAD (Computer
Coupling of Phase Diagrams and Thermochemistry) [4]. Kheuman
and Voorhees [5] developed a description of ternary alloys, which
was later generalised to multi-components by Jou et al. [6] and
Phillipe and Voorhees [7]. Other multi-component formulations
have been developed such as that by Svoboda et al. [8] and Chen
et al. [9]. Software such as TC PRISMA [10] and MatCalc [11] offer
the ability to calculate the phase diagram, particle composition,
thermodynamic variables and mobility variables needed to deter-
mine the particle kinetics as a function of chemical composition.
These models capture the formation and growth of particles,
describing Ostwald ripening kinetics coupled with classical nucle-
ation theory.

Another key aspect in simulating the precipitate kinetics in
engineering alloys is the treatment of non-dilute particle systems
[12]. Neighbouring particle’s diffusion fields may interact, acceler-
ating the particle growth or dissolution rate. Multiple-particle
diffusion has been assessed by describing the diffusion field as
quasi-static with particles treated as either point sources or sinks
[13e15]. Several authors have built upon this approach and that of
Ardell [12], deriving correction factors to modify dilute particle
growth rates to describe finite volume fraction particle dispersions
[16e18].

Other phenomena may impact particle coarsening behaviour
such as changes in particle morphology [19,20], inverse coars-
ening [21] and particle coalescence [22]. Differences in lattice
parameter between coherent particles and matrix gives rise to
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misfit stresses which contribute to the elastic strain energy and
influences the particle morphology [19]. When the contribution
to the total energy of elastic strain energy is greater than that of
interfacial energy, it is possible that small particles grow at the
expense of larger particles. Su et al. [21] describe such events as
inverse coarsening. In high volume fraction particle dispersions,
particle coalescence can impact both particle morphology and
size [22].

The aim of this paper is to further develop the mean field
description of population dynamics of polydispersed particles to
include coalescence events. The approach involves introducing
appropriate coalescence source and sink terms to the advection
differential equation governing the evolution of the particle size
distribution and is developed in Section 2. To account for the spatial
arrangement of particles, a statistical approach based on nearest
neighbour functions has been adopted. Numerical implementation
of the model is outlined in Section 3. The results and discussion
sections are given in Sections 4 and 5, and the work is concluded in
Section 6.

2. A mean field description of particle coarsening and
coalescence

2.1. Evolution of the particle radius distribution

The particle radius distribution function F(R,t) is defined as
follows: the number of particles per unit volume with radius be-
tween R and R þ dR is given by F(R,t)dR. The total number of par-
ticles per unit volume Nv(t) is then the integral of this function for
all possible particle radii

NvðtÞ ¼
Z∞
0

FðR; tÞ dR (1)

Nucleation, dissolution and coalescence of particles will influ-
ence the temporal evolution of Nv(t). These mechanisms can be
accounted for by introducing appropriate source and sink terms,
such that the rate of change of the total number of particles per unit
volume is given by

_NvðtÞ ¼ _N
þ
v ðtÞ � _N

�
v ðtÞ (2)

where _N
þ
v ðtÞ and _N

�
v ðtÞ are the ‘generation’ and ‘removal’ rates,

respectively. These are associated with a number of possible
phenomena such as nucleation, coalescence and dissolution.
Both _N

þ
v ðtÞ and _N

�
v ðtÞ can be expressed in terms of particle size

density functions _nþðR; tÞ and _n�ðR; tÞ, so that the number of
particles generated and removed per unit volume with radius
lying in the closed interval [R,R þ dR] is then d _N

þ ¼ _nþðR; tÞdR
and d _N

� ¼ _n�ðR; tÞdR. With these definitions, Equation (2)
becomes

_NvðtÞ ¼
Z∞
0

�
_nþðR; tÞ � _n�ðR; tÞ

�
dR (3)

The source terms _nþðR; tÞ and _n�ðR; tÞ may be introduced into
the continuity equation:

vFðR; tÞ
vt

þ vðFðR; tÞVðR; tÞÞ
vR

¼ _nþðR; tÞ � _n�ðR; tÞ (4)

From the moments of F(R,t) the mean particle size and volume
fraction of the dispersion can be calculated:

�
R
�

¼ 1
Nv

Z∞
0

R FðR; tÞdR (5)

f ¼ 4
3
p

Z∞
0

R3FðR; tÞdR (6)

The general form of the particle growth rate for spherical par-
ticles is given by Ref. [23].

VðR; tÞ ¼ AðtÞ
R

�
1

RcðtÞ �
1
R

�
zðR; tÞ (7)

where A is a function of the diffusivities of the alloying elements.
The term z is a correction factor that accounts for competitive
growth [12e18]. The parameter Rc is a critical radius and represents
the particle size at which the transition between dissolution and
growth occurs. The mean field description outlined above assumes
that particles are spherical and maintain this morphology as the
particle radius distribution evolves.

2.2. Particle coalescence

Consider the coalescence of two particles of size R1 and R2
forming a new particle of size R. Introducing the volume fraction
frequency density g(R,t) defined such that the volume fraction of
particles having radius between R and R þ dR is g(R,t)dR. This is the
probability of finding particles with radius lying in the closed in-
terval [R,R þ dR]. It is related to the distribution function F(R,t) as
follows

gðR; tÞdR ¼ 4p
3

FðR; tÞR3dR (8)

Assuming that the probability of any two particles randomly
sampled from the dispersion having sizes R1 and R2 are indepen-
dent from each other, then the likelihood of the first particle having
a radius R12½R1;R1 þ dR1� and the second particle having a radius
in R22½R2;R2 þ dR2� is given by g(R1,t),g(R2,t)dR1dR2. Let Gp(R1,R2,l)
be a spatial distribution function (to be defined in Section 2.3) such
that the probability of finding a particle of size R1 at a distance
[l,l þ dl] from R2 is given by Gp(R1,R2,l)dl. The probability of two
particles with radius R12½R01;R01 þ dR01� and R22½R02;R02 þ dR02� a
distance l2[l0,l0 þ dl0] is

P
�
R01 <R1 � R01 þ dR01;R

0
2 <R2 � R02 þ dR02; l

0 < l � l0 þ dl0
	

¼ fc


R01;R

0
2; l

0�dR01dR02dl0 (9)

where

fc


R01;R

0
2; l

0� ¼ g


R01; t

�
g


R02; t

�
Gp



R01;R

0
2; l

0� (10)

If at any given time only two particles merge, the total possible
number of coalesce events is 1/2Nv. The particle collide a rate is
then given by 1=2 NvGðR1;R2; lÞfcðR01;R02; l0ÞdR01dR02dl0, where
G(R1,R2,l) is the frequency at which two particles R1 and R2 initially
a distance l apart coalesce. Integrating over all possible values of
R1,R2 and l, the rate of coalescence is given by

_N
þ
v ðtÞ ¼

1
2
NvðtÞ

Z∞
0

Z∞
0

Z∞
0

G


R01;R

0
2; l

0�fc
R01;R02; l0�dR02 dl0 dR01

(11)
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