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A new treatment of transient grain growth
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a b s t r a c t

The grain radius R distribution function f ðR; tÞwith RcðtÞ as critical grain radius is formulated, inspired by
the Hillert self-similar solution concept, as product of 1=R4c and of a shape function gðr; tÞ as function of
the dimension-free radius r ¼ R=Rc and time t, contrarily to the Hillert self-similar solution concept with
time-independent gðrÞ. The evolution equations for RcðtÞ as well as for gðr; tÞ are derived, guaranteeing
that the total volume of grains remains constant. The solution of the resulting integro-differential
equations for RcðtÞ and gðr; tÞ is performed by standard numerical tools. Remarkable advantages of
this semi-analytical concept are: (i) the concept is a deterministic one, (ii) its computational treatment is
very efficient and (iii) the shape function gðr; tÞ remains localized in a fixed interval of r. The shape
function gðr; tÞ evolves towards the well-known Hillert self-similar distribution, which is demonstrated
for two initial shape functions (one of them is triangular). Also a study on “nearly” self-similar distri-
bution functions proposed as useful approximations of experimental data is presented.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Spontaneous processes as grain growth, and recently also grain
refinement, are still a topic of research, especially with respect to
the methods treating these phenomena. Two basic thermodynamic
concepts exist to describe the evolution of ensemble of grains,

(i) the distinct grain concept working with individual grains
approximated by circles or polygons in 2D and by spheres or
polyhedrons in 3D;

(ii) the grain size or radius distribution concept working with
size or radii distribution functions for grains approximated as
in (i).

As tools applied to the treatment of the distinct grain concepts
the cellular automaton approach [1] and its combination with
Monte Carlo [2] andMonte Carlo Potts [3] simulations, the level-set
method [4], the phase field method [5,6] and the Thermodynamic
Extremal Principle (TEP) [7] can be mentioned. An immediate
advantage of the TEP is that it is applicable to both a/m concepts, for
the TEP see the overview [8]. This has become possible by

formulating Onsager’s and Ziegler’s extremal principles in terms of
discrete parameters characterizing the state of the system, the so-
called “characteristic parameters”, see [9,10].

This paper is now devoted to show a new approach within the
grain radius distribution concept. The first key assumption is the
formulation of the distribution function in the dimension-free
variable r ¼ R=Rc with R being the effective radius of a grain and
Rc the so-called critical radius, for details see the next section. The
second key assumption is the mathematical structure of the dis-
tribution function f ðR; tÞ (with t being the time) as

f ðR; tÞ ¼ 1
R4c ðtÞ

gðr; tÞ; (1)

where gðr; tÞ is a dimension-free shape function. In a previous
distribution concept [11] it was assumed that the dependence on
time t is only implicit due to the time dependence of the set of
parameters pðtÞ characterizing the shape function gðr;pðtÞÞ. Going
back to the seminal works by Hillert five decades ago, see [12] and
the later overview [13], Hillert introduced gðrÞ as time-
independent version of gðr; tÞ. The shape function gðrÞ results
from the self-similar solution of the Hillert evolution equations for
individual grains derived from mean field approach (note that r is
equivalent to u and gðrÞ to PðuÞ in the Hillert notation). For sake of
completeness it should be mentioned that as dimension-free

* Corresponding author.
E-mail address: mechanik@unileoben.ac.at (F.D. Fischer).

Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier .com/locate/actamat

http://dx.doi.org/10.1016/j.actamat.2016.05.020
1359-6454/© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Acta Materialia 115 (2016) 442e447

mailto:mechanik@unileoben.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2016.05.020&domain=pdf
www.sciencedirect.com/science/journal/13596454
www.elsevier.com/locate/actamat
http://dx.doi.org/10.1016/j.actamat.2016.05.020
http://dx.doi.org/10.1016/j.actamat.2016.05.020
http://dx.doi.org/10.1016/j.actamat.2016.05.020


variable also R=a instead of R=Rc with a being a parameter different
to Rc, has been applied, see [14,15].

Let us now consider that the function g depends explicitly on
time t as a second variable, i.e. g ¼ gðr; tÞ. The goal of this paper is
formulating and solving the evolution equations for RcðtÞ and gðr; tÞ
for transient grain growth taking into account that the volume of
the grain ensemble is kept constant.

2. A short overview on the distribution concept for grain
growth

Let us shortly repeat the features of a distribution function
f ðR; tÞ. We introduce two material properties, the specific grain
boundary energy g and the grain boundarymobilityM; see Sun and
Deng [16] for quantification ofM. The time derivative is denoted by
a dot. One understands with dN ¼ f ðR; tÞdR the number of grains
with their radius R from the interval 〈R;Rþ dR〉. The total number
of grains N follows then as

NðtÞ ¼
Z∞
0

f
�
~R; t

�
d~R (2)

and its rate _N as

_NðtÞ ¼
Z∞
0

vf
vt
d~R: (3)

The evolution equation for the grain radius R reads as

_R ¼ a

�
1
Rc

� 1
R

�
; a ¼ 2gM: (4)

This equation has also been derived rigorously by the TEP in [7].
Obviously small (subscritical) grains ðR<RcÞ shrink and large (su-
percritical) grains ðR>RcÞ grow. The critical radius Rc can be
calculated by using the condition that the volume V of all the grains
must remain as a constant quantity, i.e., _V ¼ 0. Since dN ¼ f ðR; tÞdR
grains, see above, cover the volume dV ¼ 4p=3$R3dN, their volume
changes as d _V ¼ 4pR2 _RdN. Note also that the total number of grains
N changes only by disappearance of grains with R/0, which,
however, does not contribute to the rate of the total volume _V , as
the volume of disappearing grains is zero. Inserting of Eq. (4) in d _V
and performing the integration

R
d _V ¼ _V ¼ 0 yield

RcðtÞ ¼
Z∞
0

~R
2
f
�
~R; t

�
d~R

,Z∞
0

~Rf
�
~R; t

�
d~R: (5)

Furthermore, we introduce R as the radius corresponding to a
grain with the average grain volume

RðtÞ ¼
0
@Z∞

0

~R
3
f
�
~R; t

�
d~R

.
N

1
A1=3

: (6)

The distribution function f ðR; tÞ is subjected in the R; t-space to
the so-called continuity equation, for details see, e.g. [11,14,15],
reading as

vf
vt

þ
v
�
f _R

�
vR

¼ 0: (7)

Keep in mind that R is considered in Eq. (7) as the R-coordinate
in the R; t-space and that the rate _R represents the rate of the grain
radius given e.g. by Eq. (4). The integration of Eq. (7) with respect to

R in the interval 〈A;B〉 yields

ZB
A

vf
vt

d~R ¼
�
f _R

����
R¼A

�
�
f _R

����
R¼B

: (8)

For A ¼ 0 and B/∞ with f jR/∞ ¼ 0 for _R
���
R/∞

as a finite quantity,
the rate _N, Eq. (3), can be calculated with Eq. (8) as

_N ¼
Z∞
0

vf
vt
d~R ¼

�
f _R

����
R¼0

: (9)

For R/0 Eq. (4) provides the rate of the grain radius as _R ¼ �a=R
and its insertion into Eq. (9) leads to _N ¼ �af =R. Since _N is sup-
posed to be a finite quantity, f =R must assume an indeterminate
form with f ¼ 0 for R ¼ 0. L’Hopital’s rule yields _N ¼ �avf =vR for
R/0.

A question may arise, what about a distribution function with
fs0 for R/0. In this case _N ¼ �af =R tends to infinity, whichmeans
that small grains with R/0 suddenly disappear and f obtains
immediately the value zero. Thus, it makes not much sense to as-
sume nonzero values of f for R/0.

For A ¼ 0 and B ¼ R the combination of Eqs. (8) and (9) provides

ZR
0

vf
vt

d~R ¼ �
�
f _R

����
R
þ _N: (10)

Inserting Eq. (4) into Eq. (7) (or in differentiated form of Eq. (10))
provides the evolution equation for f as

vf
vt

¼ �
v
�
f _R

�
vR

¼ �a

v

�
f
�

1
Rc
� 1

R

��
vR

: (11)

Note that Eq. (11) does not include _N, since _N is independent of R
and, see Eq. (3), disappears in differentiated form of Eq. (10). Finally,
Eq. (11), completed with Eq. (5), can be solved numerically by ac-
counting for the boundary conditions f ¼ 0 at R ¼ 0 and R/∞. As
solution concept a finite difference scheme in R and the Euler
integration scheme for t can be used. For grain growth the value of
_N is given from the solution of Eq. (11) by _N ¼ �avf =vR and cannot
be imposed to the system as an external parameter.

3. Evolution of critical radius RcðtÞ and shape function gðr; tÞ

3.1. Evolution of Rc

The rate _Rc is calculated from Eq. (5) as derivative of Rc with
respect to t as

_Rc ¼

Z ∞

0

~R
2 vf
vt

d~R$
Z ∞

0

~Rfd~R�
Z ∞

0

~R
vf
vt

d~R$
Z ∞

0

~R
2
fd~R0

@Z ∞

0

~Rfd~R

1
A2 : (12)

Utilizing Eq. (1) and keeping in mind that the total volume V ,

V ¼
Z∞
0

~R
3
f
�
~R; t

�
d~R ¼

Z∞
0

~r3gð~r; tÞ d~r; (13)

is constant and obtains a finite value, it follows that rng/0 for
r/∞ and 0 � n � 3. Moreover, with g ¼ 0 for r ¼ 0 integration per
parts and using Eq. (11) allow calculating

J. Svoboda et al. / Acta Materialia 115 (2016) 442e447 443



Download English Version:

https://daneshyari.com/en/article/7877926

Download Persian Version:

https://daneshyari.com/article/7877926

Daneshyari.com

https://daneshyari.com/en/article/7877926
https://daneshyari.com/article/7877926
https://daneshyari.com

