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Ferroelectric materials interact with not only electric fields, but also with mechanical stress/strain
through intriguing cross-coupling between ferroelectric polarization and ferroelastic strain. Such me-
chanical and/or electric multi-field interactions allow symmetry breaking of the rotationally invariant
switching field and cause a variety of complicated instability phenomena in ferroelectric systems, e.g.,
super switching of in-plane ferroelectric nanodomains in strained thin films, labile and ultrafast
switching of ferroelastic nanodomains, and ferroelectric polarization reversal via successive ferroelastic
transitions. To systematically understand the nature of instabilities in ferroelectrics, here, we propose an
analytical method based on Ginzburg-Landau theory to enable rigorous description of any type of
instability in arbitrary morphologies and complex microstructures under a finite electric field and/or
mechanical loading. The present theory yields, as an instability criterion, the condition that the minimum
eigenvalue of the Hessian matrix of potential energy with respect to displacements, electrical potential,
and polarization vectors must be zero. In addition, the corresponding eigenvector represents the po-
larization behavior at the onset of instability, which is successfully validated by application of the cri-
terion to domain switching and successive ferroelastic transitions in PbTiO3 ferroelectric thin film under
electrical and mechanical excitation, respectively. This approach thus provides a novel insight into the
cause of instability in ferroelectrics. In addition, the proposed criterion is scale-independent, which
enables elucidation of the nature of various types of instability in arbitrary ferroelectric systems so that
complicated instability issues in practical situations can be addressed.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

field and/or mechanical loading, and by the coupling of such
transition to other material properties such as strain [5,6], magnetic

Ferroelectric materials are increasingly being considered as
critical components in many advanced technologies, such as
nonvolatile random access memory (FeERAM) devices [1,2], sensors,
actuators, and transducers in micro (nano) electromechanical sys-
tems (MEMS/NEMS) [3,4], due to their large ferroelectricity and
related electromechanical properties including a large piezoelectric
response and high dielectric constant. The utility of ferroelectrics is
derived from the ability to reorient or switch the spontaneous
polarization between equivalent states under an applied electric
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order [7], and surface charge [8]. Thus, instability in ferroelectric
systems, viz., a rapid or catastrophic change in polarization
ordering or reversal of the polarization vector with respect to the
multi-fields that shift the system to another configuration with
lower energy, essentially characterizes the polarization behavior of
materials and leads to diverse functionalities or the critical mal-
function of devices. Therefore, loss of stability in the polarization
configuration becomes the general mechanism that underlies a
wide variety of macroscopic and microscopic features of consider-
able importance with respect to the behavior of ferroelectric ma-
terials under multi-field excitation. However, the instability in
ferroelectric materials is generally complicated due to coherent
nonlinear interactions between ferroelectricity and ferroelasticity
[9—12], which critically prevent further exploitation of the advan-
tageous aspects of these materials and the avoidance of problems
associated with instability. Therefore, understanding the nature of
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the instability is both scientifically interesting and technologically
important for ferroelectric materials.

The Ginzburg-Landau theory was proposed on the basis of the
fundamental principles of thermodynamics and kinetics to
describe the dynamic behavior of ferroelectrics using a polarization
vector as an order parameter [13—16]. Phase field modeling based
on the Ginzburg-Landau theory has been commonly used to study
domain structures in ferroelectric materials, and polarization
switching under static electric field and/or mechanical loading
[17—21]. In recent years, phase field modeling has been extended
for simulations in real-space [22—27], which has enabled any
ferroelectric structures with arbitrary geometries and boundary
conditions to be addressed [28,29]. Although the phase field model
provides an unprecedented look at the temporal and spatial evo-
lution of polarization, the absence of theory to describe instability
in ferroelectric systems makes it difficult to capture the onset of
instability events that occur not only globally but also more often
locally. Therefore, an analytical criterion for instability in ferro-
electrics is essential to detect their onset, from local to global
events.

Various different criteria, such as the Maxwell stability crite-
rion, lattice stability criteria, and phonon soft modes, have been
proposed to separately describe each type of mechanical insta-
bility, including kink banding, buckling, dislocation, cleavage
fracture, delamination of thin film from a substrate, and highly
disordered amorphous metals [30—36]. We have previously
proposed a criterion to rigorously describe the onset of me-
chanical instability and the deformation mode at the instability
in arbitrary structures by explicitly taking into account the total
energy of the system including the potential energy and work
done by an external load and/or constraint with respect to all the
degrees of freedom (DOFs) of the system [37—41]. The advantage
of the proposed theory is the capability to elucidate the nature of
various mechanical instabilities in arbitrary structures without
limitations or assumptions and its flexibility for other systems
with different DOFs [42—45]. Thus, it should also be possible to
develop a criterion for instability in ferroelectric systems by
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extending this theory through the incorporation of the
displacement, electrical potential, and polarization DOFs into the
formulation.

In this paper, we propose a criterion for instability in a contin-
uum ferroelectric system by explicitly taking into account the total
energy of the system including the potential energy and work done
by an external field with respect to the displacement, electrical
potential, and polarization DOFs on the basis of the Ginzburg-
Landau theory. Our theory gives an instability criterion where the
minimum eigenvalue of the Hessian matrix of potential energy is
zero. The proposed criterion is validated by application of the cri-
terion to several situations of interest, such as domain switching in
ferroelectric PbTiO3 thin film under an electric field and successive
ferroelastic transitions under mechanical excitation. We further
demonstrate that the eigenvector according to the lowest eigen-
value directly yields the direction of polarization change associated
with the instability mode, which readily allows identification of the
type of instability.

2. Proposal of instability criterion for ferroelectrics
2.1. Theory of instability in ferroelectrics

Consider a finite element of a continuum ferroelectric system
consisting of N nodes under an external electric field and/or me-
chanical load. The potential energy of the system U, can be
described by the continuous displacements d, electrical potential ¢,
and polarization vectors P,

U=U(d, ¢ P), (1)
where
T
d— (di,d},,d},di,dﬁ,dﬁ,...,dﬁ}’,dﬁ,d’j) , 2)
T
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In the above, d?, ¢%, and pf denote the displacement, electrical
potential, and the polarization vector at the node « (=1, 2, ..., N) in
the i (=x, y, z) direction. The irreducible number of displacement
DOFs in the system is Ig = 3N — 6 because the DOFs for the rigid
body translation (3) and rotation (3) are subtracted from the total
DOFs of the node displacements (3N). The irreducible number of
electrical potential DOFs is Iy = N — 1, since one nodal DOF for the
potential should be fixed to represent connection to ground, i.e.
zero voltage. On the other hand, the number of polarization DOFs is
Ip = 3N. Therefore, the total irreducible DOFs in the system is
I = Ig + Ip + Iy = 7N—7. Here, an arbitrary deformation and/or
perturbation of the polarization vector for the system can be rep-
resented by a change in the following m-dimensional vector X,
which consists of all DOFs:

(5)

When the system is at equilibrium (X = Xp) under a static
external electric field and/or mechanical load, the total energy of
the system II, consists of the potential energy U, the work done by
an external mechanical load W, and the work done by an external
electric field @, and is given by:

N=U+W-+o (6)

The total energy of the system in terms of an infinitesimal
deformation and/or perturbation of the polarization vector,
II(Xo + AX), can be described by the Taylor series expansion of the
total energy, I1(Xp), by AX, and is given by:
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