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a b s t r a c t

The scaling properties of microstructural coarsening are studied by means of the envelope theorem,
which connects structural features of the projections of an evolving size distribution function in size
space and time space. This is made possible by extending the envelope treatment of [P. Streitenberger, D.
Z€ollner, Acta. Mater. 88 (2015) 334e345] to the time domain, thus establishing a new method of the
scaling analysis. An important new finding is that there exists a duality between the pictures of the
family of distribution functions in size and time space, according to which the envelope in size space
equals to the location of the maxima in time space, and vice versa. For self-similar coarsening the scaling
properties are completely reflected by the associated envelopes and maxima in the two complementary
representations. The analysis of cumulative size distribution functions for the determination of the
growth path of individual particles or grains is extended to the time space. The construction of the
envelope curves both, in size space as well as in time space, allows a new and efficient numerical
determination of the coarsening kinetics from large four-dimensional datasets of experiments and
simulations. This is demonstrated by numerical studies of the results of Monte Carlo Potts model sim-
ulations of grain growth, which confirm and complement the analytical results.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Coarsening is a ubiquitous and for technical applications
important phenomenon of late-stage phase transformations, where
diffusive transport processes lead to irreversible long-time changes
of the microstructure of materials. The kinetics of such long-time
changes is described by growth laws or evolution equations for
typical length scales of the microstructure as, for example, the
particle radius, grain size, interface curvature radius or other rele-
vant structural lengths. An important quantity associated with
these length scales is the size or probability distribution function
characterizing the spatial and temporal statistical distribution of
structural lengths in the material. The time dependence of the
microstructure finds its prominent expression in the scaling
properties of the size distribution function (SDF)dthe subject of
many studies in recent years. In a recent paper published in this
journal [1] we have investigated the scaling properties of the SDF
by considering one of its properties that had not been examined in
this context beforednamely the envelope curve of a set of

temporally developing size distribution functions. This approach is
different from the standard procedure of scaling [2e6] used by
many studies in recent years, especially for Ostwald ripening (e.g.
[7e10], and the literature within) and grain growth (e.g. [11e15],
and the literature within). The approach does not replace the
standard procedure but complements it by new aspects and results.
In particular, for a self-similar family of size distribution functions,
where the particle or grain size is treated as variable and the time as
family parameter, we've shown in Ref. [1] that the envelope is
uniquely determined by the growth exponent and an envelope
parameter, where the latter is a new characteristic quantity of the
coarsening system associated with the scaled size distribution
function.

However, the envelope analysis in Ref. [1] was restricted to the
size domain by considering the SDF only as a function of the size
variable with the time as the family parameter. In the present pa-
per, this restriction is removed by treating alternately size and time
as equal variable and family parameters, respectively. This opens up
the possibility to apply the envelope theorem, which puts the en-
velope analysis of coarsening started in Ref. [1] on a new and sys-
tematic basis. The envelope theorem connects the structural
features of the different projections of the evolving size distribution
function onto size space and time space, which are complementary
to each other. As an important new finding it is shown that there
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exists a duality between the pictures of the family of distribution
functions in size and time space according towhich the envelope in
size space equals to the location of the maxima in time space, and
vice versa. For a self-similar family of size distribution functions, it
will be shown that the scaling properties are completely reflected
by the associated envelopes and maxima in the two complemen-
tary representations, which are uniquely determined by growth
exponents, envelope parameters and length scales as characteristic
quantities of the coarsening system.

The presented approach of the scaling analysis, which is based
on the envelope theorem with size and time as full and equal var-
iables, may also be of particular interest with regard to the new
four-dimensional measurement methods, as phase-contrast x-ray
tomography and others, which allow to follow the evolution of the
3-D microstructure in-situ as a function of time [16]. Such 4-D
experiments (cf., e.g., [16,17]) and related modern fast simulations
(cf., e.g., [17,18]) of coarsening processes require also new methods
of transforming large four-dimensional datasets into appropriate
physical observables describing the coarsening kinetics. The con-
struction of the envelope curves both in size space as well as in time
space allows a new and efficient numerical determination of the
coarsening kinetics from a high density of simulation and experi-
mental data, respectively. This is demonstrated by numerical
studies of the results of Monte Carlo Potts model simulations of
grain growth, which corroborate and complement the analytical
results.

The paper is organized as follows. In chapter 2 the envelope
theorem is presented in a form, which is particularly suitable for
our task and is applied to the treatment of the size distribution
function of the coarsening process in chapter 3. In the next chapter
the general equations of the complementary envelopes in size and
time space for self-similar sets of SDFs are derived and used to
characterize their scaling properties. In chapter 5, the analysis of
the cumulative SDF for determination of the individual growth path
of particles or grains is extended to the time space allowing an
efficient reconstruction of the growth law. Finally, chapter 6 is
devoted to the numerical treatment of the coarsening kinetics from
Monte Carlo Potts model simulation data by means of the envelope
method corroborating the theoretical results.

2. The envelope theorem

Let us consider the regular function z ¼ zðp; qÞ of the two in-
dependent variables p and q, which can be treated alternately as
endogenous variable and exogenous parameter, respectively.
Consider first the family of curves zðp; qÞ vs. p with q as the exog-
enous family parameter. This family represents the projection of
the function z ¼ zðp; qÞ onto the z-p-plane of a three-dimensional
Cartesian p-q-z-coordinate system. The family has an envelope
ze ¼ zeðpÞ. That is the curve, which touches all members of the
given family of curves, if the following set of equations are fulfilled
[19]:

J ze; p; qð Þ ¼ 0; (1a)

v

vq
J ze; p; qð Þ ¼ 0; (1b)

where

J ze; p; qð Þ ¼ ze � z p; qð Þ (2)

is the family of zðp; qÞ vs. p in the implicit form with ze, p and q as
variables. Eqs. (1a) and (1b) follow from the property that the
tangent at any given point of the envelope is also a tangent to the

curve zðp; qÞ vs. p that passes through this point [19]. Since Eq. (1b)
is equivalent to the requirement of an unconstraint maximum of
zðp; qÞ with respect to the parameter q,

v

vq
zðp; qÞ ¼ 0; (3)

the solution of Eq. (1b) can be written in the form

qmðpÞ ¼ max
q

zðp; qÞ; (4)

where qmðpÞ is the correspondingmaximizer. Eliminating bymeans
of Eq. (4) the parameter q in Eq. (1a) yields the following equation
for the envelope of the family of curves zðp; qÞ vs. p:

zeðpÞ ¼ zðp; qmðpÞÞ: (5)

Conversely, considering now the family zðp; qÞ vs. q, where p is
treated as the family parameter and q as the variable, which rep-
resents the projection of z ¼ zðp; qÞ onto the z-q-plane. The enve-
lope of this set of curves follows according to Eq. (1b) from the
solution of the unconstraint maximum condition

v

vp
zðp; qÞ ¼ 0 (6)

given by themaximizer pmðqÞ ¼ max
p

zðp; qÞ, which inserted into Eq.
(1a) yields

zeðqÞ ¼ zðpmðqÞ; qÞ: (7)

From Eqs. (1)e(7) the envelope theorem can be summarized as
follows: The envelope of the family of curves zðp; qÞ vs. p represents
the maxima of the family of curves defined by zðp; qÞ vs. q, while
conversely the envelope of this family, zðp; qÞ vs. q, represents the
maxima of the family zðp; qÞ vs. p. With other words, the existence
of an envelope of the projection of curves z ¼ zðp; qÞ onto the z-p-
plane is associated with the existence of maxima of the projection
of the same curves onto the z-q-plane. It is this duality between the
pictures of the two families of the function, which is used in the
following sections to describe the coarsening kinetics.

It should be mentioned at this point that the first order deriv-
ative of the envelopes Eqs. (5) and (7) is equal to the partial de-
rivative of zðp; qÞ with respect to p and q, respectively,

dzeðpÞ
dp

¼ vzðp; qÞ
vp

����
q¼qmðpÞ

;
dzeðqÞ
dq

¼ vzðp; qÞ
vq

����
p¼pmðqÞ

: (8)

This is a direct consequence of the envelope conditions Eqs. (3)
and (6) and is an alternative formulation of the envelope theorem,
which is mainly used in producer and optimization theory of eco-
nomics [20].

3. Size distribution functions and the envelope theorem

In order to demonstrate the application of the above described
envelope theorem to the coarsening theory we consider at first the
size distribution function FðR; tÞ, which is defined as usual in such a
way that dN ¼ FðR; tÞdR denotes the number of particles or grains
per unit volume in the size interval R and Rþ dR at time t (cf., e.g.,
[8,21]). Consequently, the total number of grains at time t is given
by

NðtÞ ¼
Z∞

0

FðR; tÞdR: (9)
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