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a b s t r a c t

Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction
equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal
conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal
conductivities of domain-engineered {001}p-BiFeO3 thin films are quantitatively reproduced. In
conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for
interpreting the relationship between the effective thermal conductivity and micro-/domain-structures.
By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal
conductivity for PbZr1-xTixO3 films under different composition, thickness, strain, and working conditions
is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and
a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the
effective thermal conductivity. Therefore, we expect our findings will stimulate future theoretical,
experimental and engineering efforts on developing devices based on the tunable effective thermal
conductivity in ferroelectric nanostructures.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The ability to deterministically control the thermal conductivity
for semiconductors is of fundamental importance in fields of pho-
nonics and thermoelectrics [1,2]. Enhancing scattering during
phonon transport provides ameans to achieve this control. This can
be achieved by engineering the high-densities of interfaces in
nanostructured materials such as superlattices [3e6], nanowires
[7,8], quantum dots [9e12], and nanocomposites [13e17]. When
the size of the nanostructure is smaller than the phonon mean free
path, phonons can be strongly scattered, giving rise to a decrease in
the thermal conductivity.

In ferroelectrics, such as BaTiO3 [18] and KDP [19] single crystals
and BiFeO3 [20] and PbZr1-xTixO3 (PZT) [21] thin films, it was found
that the ferroelastic domain walls acted as interfaces that can
scatter phonons resulting in a net decrease in the effective thermal
conductivity. For thin films, the size of ferroelectric domains ranges
from several nanometers to hundreds of nanometers depending on

the chemical composition, material size, and mechanical and
electric boundary conditions of the film [22], which is generally
compatible with those phonon mean free paths that carry thermal
energy at room temperature [23e26]. Recently, altering the effec-
tive thermal conductivity via domain structures engineering either
by controlling the film-growing conditions [20] or by applying an
electric field [21] has been demonstrated.

In this work, taking BiFeO3 and PbZr1-xTixO3 thin films as ex-
amples, we demonstrate that the effective thermal conductivity can
be tuned by engineering the ferroelectric domain structure. In or-
der to achieve this, we employ the phase-field model of ferro-
electric thin films (see Sec. 2.1) to evolve the domain structures of
PbZr1-xTixO3 [27e29]. We assume that the domain and domainwall
can be regarded as two identities with different thermal conduc-
tivities [20,21]. In order to obtain the effective thermal conductivity
as function of domain structure, we solve the stationary heat con-
duction equation with an inhomogeneous thermal conductivity
distribution using a spectral iterative perturbation (SIP) method
[30e33], as shown in Sec. 2.2. Then, the effective thermal con-
ductivity and/or temperature distribution in specific examples are
calculated to validate the proposed algorithm (Sec. 3.1). For PZT* Corresponding author.
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thin films, the film-growing conditions, including the chemical
composition [34], substrate-mismatch strain [35,36], film thickness
[37e40], and film orientation [41e43], can be controlled to engi-
neer the domain structure. A Piezoresponse Force Microscopy tip
also can be used to modify the domain structure [44e49]. The ef-
fects of external conditions on domain structure as well as the
effective thermal conductivity are studied in Sec. 3.2. Before we
conclude in Sec. 4, we provide a short discussion (Sec. 3.3) on the
possible challenges and future perspective in the theoretical pre-
diction of domain wall-tuning of effective thermal conductivity in
ferroelectric nanostructures.

2. Method

2.1. Phase-field model of a ferroelectric thin film

The phase-field model for ferroelectric thin films has been
presented in numerous publications [50e54], and thus we focus on
the phase-field description of inhomogeneous conductivity in a
domain structure. For determining the domain-wall density in a
given domain structure, we introduce a phase-field order param-
eter h(x) to distinguish the domain-wall region and domain. The
polarization gradient energy density fgrad(x) is used as a criterion to
distinguish the domain interior and domain-wall region because
the polarization gradient in the domainwall is much higher than in
the domain. The general formulation of the gradient energy density
in an anisotropic system can be expressed as

fgradðxÞ ¼
1
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where gij is related to gijkl through the Voigt's notation and g12 ¼ 0,
g11 ¼ 2g44 in an isotropic system.

For h(x), it can be written as follows by considering a diffuse
interface

hðxÞ ¼ 1
2

n
1:0þ tanh

h
b
�
fgradðxÞ � fc

�io
; (2-3)

where b is a positive parameter controlling the width of the
interface, fc is a critical value of the polarization gradient energy
density separating the bulk domain from the domain-wall region.
Therefore, in the domain-wall region h(x) ¼ 1, and inside a
domainh(x)¼ 0. In this work, b¼ 500 and fc¼ 0.15 J m-3 are used for
PbZr1-xTixO3 films while assuming isotropic gradient energy
coefficient.

The type of a domain wall that separates the two adjacent do-
mains is determined using the product of their polarization vectors.
For example, there are two domains, a and b, with respective po-
larization vectors Pa and Pb separated by a domain wall L. The type
of domain wall L is determined by q(L) ¼ cos�1(Pa$Pb)/(PaPb). For
q(L) ¼ 180�, 90�, 71� and 109�, the corresponding domain walls are
named 180�, 90�, 71� and 109� walls, respectively.

The spatially dependent thermal conductivity in a ferroelectric
thin film with domain structure then can be described as follows

kijðxÞ ¼ kfs�wall
ij hðxÞ þ kdomain

ij ð1� hðxÞÞ; (2-4)

where kfs�wall
ij and kdomain

ij represent the individual thermal con-
ductivity of the ferroelastic domain wall and domain, respectively.
For the 180� ferroelectric domain wall, since the acoustic phonons
that carry most of the thermal energy would have identical phonon
dispersion spectra on either side of the domainwall, therewould be
no acoustic mismatch. Also, the amount of strain at a 180� wall is
very small, thus the 180� ferroelectric domain wall is assumed to
have the same thermal conductivity as the domain interior.

2.2. Solution of the stationary heat conduction equation

In order to obtain the effective thermal conductivity, it is
necessary to solve the stationary heat conduction equation. Heat
conduction in a material with inhomogeneous thermal conduc-
tivity distribution is governed by

v
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; (2-5)

where kij(x) is the spatial-dependent thermal conductivity tensor,
T(x) is the temperature distribution, r, cp, and q(x) are the mass
density, specific heat capacity, and the internal heat source of the
material, respectively. Under stationary conditions, which means
sufficient time has passed such that the thermal field, T(x), is no
longer evolving with time, Eq. (2-5) reduces to
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We consider a material system in which the thermal conduc-
tivity is periodic on the boundary and the thermal conductivity can
be written as

kijðxÞ ¼ k0ij þ DkijðxÞ; (2-7)

where k0ij and Dkij(x) represent the homogeneous and periodically
inhomogeneous parts of the thermal conductivity, respectively. The
stationary distribution of temperature depends on the boundary
condition, and here we consider a homogeneous driving force for
heat conduction in the material, i.e.,

vTðxÞ
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¼ vT linearðxÞ
vxj

þ vuðxÞ
vxj

¼ fj þ
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; (2-8)

where Tlinear(x) represents the linear part of the temperature pro-
file, and u(x) represents the nonlinear part of the temperature
profile that originates from the inhomogeneous distribution of the
thermal conductivity and has a periodic distribution. Here we use fj
to represent vTlinear(x)/vxj for simplification. Combining Eqs. (2-7)
and (2-8), Eq. (2-6) can be written as
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Rearranging Eq. (2-9) we get
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