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a b s t r a c t

Discrete dislocation plasticity simulations are performed to investigate the static frictional behavior of a
metal asperity on a large single crystal, in contact with a rigid platen. The focus of this study is on
understanding the relative importance of contact slip opposed to plasticity in a single asperity at the
micrometer size scale, where plasticity is size dependent.

Slip of a contact point is taken to occur when the shear traction exceeds the normal traction at that
point times a microscopic friction coefficient. Plasticity initiates through the nucleation of dislocations
from Frank-Read sources in the metal and is modeled as the collective motion of edge dislocations.

Results show that plasticity can delay or even suppress full slip of the contact. This generally happens
when the friction coefficient is large. However, if the flattening depth is sufficiently large to induce
nucleation of a large dislocation density, slip is suppressed even when the friction coefficient is very
small. This study also shows that when self-similar asperities of different size are flattened to the same
depth and subsequently loaded tangentially, their frictional behavior appears size independent. How-
ever, when they are submitted to the same contact pressure, smaller asperities slip while larger asperities
deform plastically.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Friction between two rough surfaces resists their relative mo-
tion. The surfaces respond to an applied sliding force by deforming
elastically and plastically and by eventually loosing adhesion.
Plastic deformation and loss of adhesion are competing mecha-
nisms: if the contact roughness can respond to the applied load
through plastic deformation, slip at the interface might not take
place, albeit at the macroscale the bodies appear displaced relative
to each other. The occurrence of slip will clearly depend also on the
interfacial energy between the contacting surfaces, and therefore
on the materials in contact.

The classical AmontonseCoulomb law of friction states that the
onset of sliding of a macro-scale contact occurs when the ratio
between the tangential force f and the applied normal force fn ex-
ceeds the static friction coefficient m. This statement relies on the
assumption that the friction coefficient m is a constant and there-
fore a property of the interface, and that it is not important how the

friction force and the normal force vary along the contact, since
only forces averaged along the contact are considered. Along the
same line, Bowden and Tabor [1] stated that the friction force is
proportional to the true contact area C, where the proportionality
constant is the friction strength. Again, variations in the shear stress
along the contact are not assumed to be significant or relevant in
the friction process.

However, when two surfaces are under contact loading, it has
been shown by molecular dynamics [2] and discrete dislocation
plasticity simulations [3] that the contact shear stress varies
significantly along the apparent contact area. This is mainly
attributed to the fact that the true contact area is highly patchy at
the micrometer scale. Unfortunately, the measurement of true
contact area is far from easy, especially when both materials in
contact are non transparent. While the average size of the contact
area can be obtained by acoustic or electroconductivity measure-
ments, details of the contact area can only be captured by means of
microscopy if the contacting materials are transparent, made for
instance of acrylate [4]. A technique that is often used in biome-
chanics to measure areas and pressures under moderate applied
forces involves the use of pressure-sensitive Fuji film [5]. More* Corresponding author.
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sophisticated experimental techniques are those devised by the
groups of Fineberg [6] and of Bonn [7]. The first groups make use of
a laser beam to detect the true contact area between PMMA blocks,
the second relies on the enhancement of the fluorescence of rig-
idochromic probe molecules attached to one of the contacting
surfaces. The experimental contact surfaces measured with the
various techniques have always a patchy nature, irrespectively of
the material tested. Consequently, it is to be expected that for
metals the contact pressure profile is indeed a collection of high
peaks, instead of a smooth pressure distribution as is predicted by
continuum plasticity simulations, e.g. Ref. [8].

The aim of this paper is to investigate the frictional behavior of a
single microscale asperity protruding from the surface of a metal
body, accounting for plasticity. Plastic deformation has been
observed experimentally when flattening spherical single [9] and
multi-asperities [10] with moderate contact loads. The numerical
technique used in this study is the discrete dislocation plasticity
method [11] which can capture key features of microscale plas-
ticity: size effects [12e14], strain gradient effects [15e17] as well as
local stress peaks in the surface pressure [12,18]. Attention herewill
mainly focus on the competition between plasticity and slip, for
micron-scale asperities of different size.

This work is an extension of previous discrete dislocation plas-
ticity studies where a single or multiple asperities were plastically
sheared, under sticking contact conditions [19,20]. Due to the full
sticking nature of the contact, a very high shear stress was reached
locally on the contact. Here, we use a contact condition that,
instead, allows for local sliding. Inspired by the CattaneoeMindlin
problem [21,22], the contact will slip when the contact shear stress
exceeds the normal shear stress multiplied by a constant friction
coefficient. The difference with the CattaneoeMindlin problem and
with the classical Amonton's law is that instead of using average
stresses on the contact, local stresses will be computed at each
point in contact. For simplicity in the interpretation of the results,
the asperities are firstly flattened with a rigid platen, such as to
reach elastic or plastic deformation, and subsequently loaded
tangentially by rigidly displacing the platen. Also, the asperity is
taken to be flat initially, so that the contact area stays constant
during the simulation. This choice is motivated by the fact that
flattening asperities with sinusoidal profile leads to a highly frag-
mented contact area, with a large central contact region sur-
rounded by many small contact patches. The contact patches are a
consequence of dislocations leaving behind crystallographic steps
at the surface [18]. Using such a fragmented contact area as the
starting point for the shearing simulations has the drawback that
the size of the small contact patches can be an order of magnitude
smaller than the large contact area, and therefore the question
arises on whether the various contact patches should have the
same friction coefficient, and if not, how much should they differ.
Additionally, the size and location of the contact patches is sto-
chastic and obtain statistically significant results would require a
large number of simulations.

A similar modeling approach for dry static friction was used by
Deshpande et al. [23] who investigated the behavior of flat and
sinusoidal microscale contacts on a flat metal single crystal. The
contact was mimicked bymeans of a cohesive zone. De-adhesion of
the interface was modeled via a shear traction versus tangential
displacement relationship, which is characterized by a cohesive
strength, independent of the normal load acting on the contact. The
paper [23] has the merit of showing that the friction stress is
dominated by slip at small contact size (smaller thanz 40 nm), and
by plasticity at large contact size (larger thanz4mm). However, the
assumption that the cohesive strength t is independent of both
contact size and normal loading, leads to very high friction co-
efficients (m¼t/Pm reaches values much above 10 in Ref. [23]). It

should be noted that this is not in conflict with the BowdeneTabor
interpretation of the friction force being the product of friction
strength and contact area, because they assumed that the contact
area increases with increasing normal loading. Nevertheless, in
order to avoid any possible confusion on this, we here introduce a
friction coefficient that relates the shear traction to the local contact
pressure.

2. Formulation

2.1. Boundary value problem

A rigid platen is in contact with a large metal single crystal
through a single rectangular asperity that protrudes from the sur-
face of the metal crystal (see Fig. 1). The length of the crystal is
L¼ 1000mm and its height h¼ 50mm. The loading consists of two
steps: first the asperity is flattened by prescribing vertical
displacement of the rigid platen, then the platen is displaced
tangentially. During flattening,

u2
�
x1; hþ hp

� ¼ �
Z

C

v2dt; (1)

where v2 is the velocity of the rigid platen in the vertical direction
and C:¼[�w/2,w/2] is the contact area. Outside the contact region,
the top surface is traction free. The boundary conditions at the
bottom are:

u1 ¼ u2 ¼ 0; on x2 ¼ 0: (2)

The traction distribution along the contact normal to the platen
determines the flattening force Fn (per unit of out-of-plane depth):

Fn :¼ �
Z

C

s22dx1: (3)

Similarly, the shear force is calculated as

Fs :¼
Z

C

s12dx1: (4)

After flattening, a tangential displacement is imposed at the
contact by prescribing

u1
�
x1; hþ hp

� ¼
Z

C

v1dt; (5)

u2
�
x1; hþ hp

� ¼ u0; x12C; (6)

where v1 is the velocity of the platen in the horizontal direction and

Fig. 1. Two-dimensional model of a rectangular asperity protruding from a large
crystal flattened and sheared by a rigid platen.

F. Sun et al. / Acta Materialia 109 (2016) 162e169 163



Download English Version:

https://daneshyari.com/en/article/7878384

Download Persian Version:

https://daneshyari.com/article/7878384

Daneshyari.com

https://daneshyari.com/en/article/7878384
https://daneshyari.com/article/7878384
https://daneshyari.com

