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Phase field modelling of rayleigh instabilities in the solid-state
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a b s t r a c t

We have used a phase field model to study Rayleigh instability driven evolution of a cylindrical pore. The
key feature in the model is its ability to incorporate surface diffusion as the mechanism for mass
transport. We first benchmark our model with analytical results for growth rates of sinusoidal pertur-
bations imposed on the surface of a cylindrical pore of radius R at early times. We then use the model to
predict breakdown of infinite cylindrical pores; the principal finding from our analysis is that time to
failure scales as R4. We have also studied the break-up of closed and open cylindrical pores of finite
length; a series of about five spherical pores get pinched off sequentially at the cylinder ends before the
middle parts of the pore break up. Compared to the first closure event in an infinite pore, the first pinch-
off event in closed and open pores is faster by about 4 times and 25 times, respectively.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Interfacial phenomena resulting from instabilities has been a
source of interest for physicists and material scientists. Their un-
derstanding allows one to predict the principal microstructural
length scales in the problem, which is often quite important both
for the design of better materials as well as newer alloys. A classic
instability is that investigated by Lord Rayleigh [1], on thin cylin-
drical fluid jets causing them to break up into spherical droplets. In
a classical study, Nichols and Mullins developed a formalism for
studyingmorphological changes in solids, including solid cylinders,
using surface diffusion [2] and volume diffusion [3]. In a later study,
Nichols [4] extended this analysis to the case of instabilities in a
cylinder of finite length. Theoretical predictions of Nichols and
Mullins have been verified in numerous experiments [5]. A 2001
paper by Mullins [6] presents a review of progress made in the
theoretical treatment of capillarity induced surface morphologies.

The theory proposed by Nichols and Mullins has been useful for
experimentally measuring surface diffusion coefficients [7]. Ray-
leigh instability is known to play a role in crack healing in ceramics
[8e11]. It has also been exploited in nanowires to produce a long
chain of nanospheres [12]. It has been conjectured to be the
mechanism for break-up of plate-like structures into cylinders [13].

In this paper, we use the phase field modelling technique to
study Rayleigh instabilities. Though well known, it is worth

repeating the advantages of a phase field approach: Unlike theories
and sharp interface models (which are often linearised to simplify
the analysis, and therefore, are applicable only to early times),
phase field models allow us to study the process right from the
onset of instability to the final break-up of a cylindrical pore.
Further, they handle pinch-off (i.e., pore closure) events gracefully,
and allow us to study post-pinch-off behaviour (e.g., a second and
subsequent pinch off events) as well. Yet another advantage is that
the phase field model presented here can be easily extended to
study porous, polycrystalline membranes, of the kind investigated
by Choudhury et al. [14].

In the next section, we present a recap of the results of Nichols
and Mullins for an infinite cylindrical pore. In Section 3, we
formulate our phase field model which incorporates surface
diffusion as a dominant mechanism for atomic transport (Our
model is similar to those in Refs. [15e17]). Section 4 starts with a
validation of our model through a critical comparison with
analytical results of Nichols and Mullins, followed by a study of
infinite and finite cylindrical pores of different radii.

2. Theory

In this section, we summarize the theory of Nichols and Mullins
[1,3] for the onset of Rayleigh instability in an infinite cylinder of
radius R. The driving force for the growth in amplitude of a sinu-
soidal perturbation of wavelength l is the reduction in the surface
area; however, this reduction is possible only for perturbations
beyond a critical wavelength of l > 2pR.
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While there may be contributions from viscous flow,
evaporation-condensation, or volume diffusion, we focus here on
surface diffusion as the dominant mass transport mechanism, as is
appropriate for the evolution of a pore surface. In this case, the
evolution of an initially cylindrical surface is given by Eq. (1) [3] in
cylindrical co-ordinates with r as the radial distance from the z axis,
the axis of the cylinder (it is assumed that there is no angular
dependence). This is a linearised version of the general equation
derived by Nichols and Mullins, and therefore, it is valid only for
early stages.
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The parameter B, which is a constant at a given temperature, is
given by

B ¼ gsUDsds=kBT (2)

where gs is the surface energy, U is molar volume divided by
Avogadro's number, Ds is surface diffusivity, ds is surface width, kB is
Boltzmann's constant and T is temperature.

The instantaneous amplitude 2(t), of a sinusoidal perturbation
of wavelength l and an initial amplitude of 20 is given by

εðtÞ ¼ ε0exp
�
t
t

�
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and the rate of growth of amplitude 1
t has the following dependence

on the wave number (k ¼ 2p/l):

1
t
¼ ðkRÞ2 � ðkRÞ4
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The following key results flow from the preceding equations.
There exists a maximum in the growth rate for a perturbation with
a wavelength lmax ¼ 22pR which is a function of R alone [3].
Physically, the origin of the terms in Eq. (4) may be understood as
follows: in a cylinder with a sinusoidal perturbation of amplitude
2, there arise gradients in two principal curvatures, k1 ¼ (1/(rþ2))
and k2 ¼ (v22/vz2). The variation of k1 causes a chemical potential
gradient that drives atoms from the depressions (larger k1) to
bulges (lower k1) along the interface, while that in k2 drives atoms
in the reverse direction. The former grows the perturbation
amplitude 2, while the latter shrinks it. From dimensional argu-
ments, it can be shown that growth rates in 2 due to these two
effects vary as (k/R)2 and �k4, respectively, and causing the emer-
gence of a dominant length scale (2p/kmax)¼lmax.

As we show in our results in the following sections, not only
does a perturbation with lmax dominate the onset of instability, it
also becomes the principal length scale even at late stageswhen the
pore is about to close.

3. Phase field model and solution techniques

We formulate our phase-field model in terms of non-conserved
order parameters hs(r,t),hv(r,t) which act as indicator functions
denoting the presence and absence of the solid or vapour phase
respectively; i.e., when hs¼1 and hv¼0, it denotes the solid-phase,
and conversely when hs¼0 and hv¼1, it denotes the vapour phase.
At the surface, 0<(hs,hv)<1. Along with these non-conserved order
parameters, we also use the density field r(r,t) as a conserved order
parameter which takes its equilibrium value of unity in the bulk
solid; in the vapour phase, it has a value of zero.

Using the order parameters, we construct a free energy

functional as follows:

F ¼ Nv
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fs ¼ 0:25þ h4s
4
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fv ¼ 0:25þ h4v
4
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where ki is gradient energy coefficient andWsv sets the height of the
barrier between the energy of the solid and that of the vapour
phase. This functional gives a free energy surface where the solid
phase with a density of unity exists in equilibrium with vapour
phase with zero density.

The evolution of the density field variable r(r,t) is governed by
the CahneHilliard equation [18].
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where atomic mobility M is decomposed into its bulk (Mbulk) and
surface (Ms) components as follows:

M ¼ Mbulk þ 16:0ðMsfsÞ (10)

M is related to diffusivity, and 4s is a function of order param-
eters hi(r,t) which has non-zero values only at the surface and
vanishes at all other locations. We have chosen the following form
for 4s:

fs ¼ h2s h
2
v (11)

The non-conserved order parameters, hs and hv, evolve accord-
ing to the AlleneCahn equation [19].

vhi
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where Ls is a kinetic parameter related to surface mobility. The
model offers flexibility in choosing different Ms and Ls values to
study their effect on microstructure evolution.

A note about the way our model is constructed is in order. We
use two order parameters for the evolution of a single physical
interface in the problem. Our model differs from other phase field
models that use multiple order parameters with a sum constraint
[20]. Also, since there is only a single interface, a single order
parameter may have sufficed; however, we are motivated to choose
two order parameters so that it can be extended easily to study
instabilities in porous, polycrystalline materials; the results of this
study will be published elsewhere.

The second point is about the incorporation of surface diffusion.
In this particular formulation we follow a scalar variant (Eq. (10)),
similar to several other formulations (see Refs. [15e17,21e23]). We
are aware of the deficiencies due to such a formulation [24];
however, in the present study we will be investigating interface
scales which are very small (atomic dimensions), thus reducing the
errors originating from the simplistic construction of the interface
mobilities. Therefore, our results remain unaffected as a function of
the interface widths in this range of application. For modelling
systems with much larger interface widths quantitatively, we will
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