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Sintering force behind the viscous sintering of two particles
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a b s t r a c t

The mechanical principles of viscous sintering were analyzed by finite element simulation of a simple
model: the coalescence of two identical spheres. The sintering force in the non-equilibrium process of
viscous sintering was defined as the difference between the average pressure on the contact area and the
surface tension along its circumference. The average strain rate on the contact plane was proportional to
the sintering force, so that the sintering force was the thermodynamic driving force for both neck growth
and shrinkage. Conversely, a theoretical method was proposed to elicit the sintering force from neck
growth curves. The simulation also shows that the tensorevirial equation, which is an alternative
method to describe the overall anisotropic deformation of aggregates of particles, is valid for viscous
sintering.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

When two liquid drops touch, they coalesce into a single bigger
drop driven by surface tension to decrease the total surface area
[1,2]. The physical principle of this particle coalescence is common
to viscous sintering of glasses and polymers at temperatures higher
than their glass transition. While the microstructural evolution
during sintering of a huge number of particles is very complicated,
the sintering of two identical spherical particles is a simple model
for understanding sintering phenomena as proposed by Frenkel [3].
A circular contact area is formed at the point of contact of spheres.
As its radius increases with time, the length of the particle pair
decreases. The neck growth and the shrinkage are essential char-
acteristics of sintering. The purpose of the present paper is to reveal
that the sintering force is the thermodynamic driving force for both
neck growth and shrinkage in viscous sintering. Conversely, the
sintering force can be elicited by the observation of neck growth
rate.

The sintering force is originally defined for equilibrium states,
where the mechanical force just balances the surface tension forces
so that the porous materials do not shrink [4]. It is determined
rigorously for a row of particles [5,6], a constrained particle pair [7],

and periodic porous structures under the constraint of fixed vol-
ume [8e12]. The sintering force in equilibrium states is indepen-
dent of the details of sintering kinetics, but, depends on only
geometry and the ratio of grain boundary energy to surface energy.
In equilibrium states, the sintering force is defined from energy,
curvature, and mechanical force, and all three methods give the
identical value [11]. On the other hand, in non-equilibrium pro-
cesses, the sintering force is directly related to the sintering ki-
netics, e.g., the relative velocity between two crystalline particles is
proportional to the sintering force in the sintering by coupled grain
boundary diffusion and surface diffusion [13,14]. The macroscopic
shrinkage of a powder compact is described by bulk viscosity and
sintering stress in the continuum model of sintering [15e19]. The
analysis of sintering force between two particles is a basis for
bridging the microscopic and the macroscopic models, because the
sintering stress arises from sintering forces acting among a huge
number of particles in the initial stage of sintering.

For the viscous sintering of two glass spheres, most of works
have focused mainly on neck growth and shrinkage. Frenkel's
approximate model on neck growth was corrected by Eshelby [20]
and has been referred to as the FrenkeleEshelby model. However,
this model overestimates the neck growth rate, and does not match
to the results of numerical simulations by finite element method
(FEM) [21,22], boundary elementmethod (BEM) [23], and boundary
integral method [24,25]. A modified Frenkel model was later* Corresponding author.
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proposed to approximate the neck growth in all stages of sintering
[26]. The numerical simulations agreed well with experimental
results [27]. Numerical simulations have been further extended to
the sintering of aggregates of many particles [28e30]. Moreover
two dimensional problems were solved for sintering of cylinders
[31e33]. But, only Jagota and Dawson [21] analyzed the sintering
force in viscous sintering by using the energy method. We found
that the sintering force defined by amechanical force is appropriate
to describe the shape evolution of a single ellipsoidal particle [34].
In the present paper we show that the sintering force drives the
local flow field near the contact plane in non-equilibrium process of
viscous sintering of two spherical particles. The neck growth and
the shrinkage are related to this local flow field. We discuss also the
tensorevirial equation which describes the overall deformation of
aggregates of particles in viscous sintering.

2. Mechanics of viscous sintering

The sintering of glasses and polymers occurs by viscous flow
driven by surface tension. The stress in a viscous fluid is expressed
by

sij ¼ �pdij þ m

 
vui
vxj

þ vuj
vxi

!
(1)

where ui is the velocity, m is the viscosity, p ¼ �sii/3 is the pressure.
We consider a very small particle with high viscosity, then, the
deformation of the particle is described by Stokes equation [35].

vp
vxi

¼ m
v2ui
vxjvxj

: (2)

The summation convention for repeated indices is applied
throughout this paper. The mass conservation in incompressible
flow is expressed as

vui
vxi

¼ 0: (3)

The boundary condition on the surface is

�pni þ m

 
vui
vxj

þ vuj
vxi

!
nj ¼ gskni (4)

where gs is the surface energy, ni is the unit (outward) normal to the
surface, and k¼ div n is the curvature. The curvature is defined that
it is negative for a spherical particle.

Imagine two identical particles touch as shown in Fig. 1, and cut
it into two parts V and V

0
at the contact area A. The total force acting

on the part V, that is, the integral of forces Fi ¼ vsij/vxj distributed
over V, is a sum of the traction on the surface S of the part V and the
traction spread over the contact area A.

Z
V

FidV ¼
Z
V

vsij
vxj

dV ¼
Z
S

sijnjdSþ
Z
A

sijnjdS (5)

Here, we used the divergence theorem of Gauss. We assume the
surface energy is constant. From the boundary condition of the
surface, Eq. (4), and the application of Stokes theorem (see Ap-
pendix B in Ref. [14]), the first term on the right hand side of Eq. (5)
is given as the line integral along the contour C of the cross-section
A

Z
S

sijnjdS ¼
Z
S

gsknidS ¼
Z
C

gsðn� tÞidr (6)

where n is the unit normal vector to the surface, and t is the unit
tangent vector along the contour C. Substituting Eq. (1), the second
term on the right hand side of Eq. (5) is expressed as

Z
A

sijnjdS ¼ �
Z
A

pnidSþ m

Z
A
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vxj

þ vuj
vxi

!
njdS (7)

In the sintering of two identical spheres, the total force acting on
the part V is zero. Substituting Eqs. (6) and (7) into Eq. (5), the axial
component is given as

gsl� pAþ 2m
Z
A

vu3
vx3

dS ¼ 0 (8)

where A¼ pc2 is the cross sectional area, c is the contact radius (the
neck radius), l ¼ 2pc is the circumference, and p is the average
pressure on the contact plane

p ¼ 1
A

Z
A

pdS (9)

The average strain rate on the contact area is defined as

_Eij ¼
1
2A

Z
A

 
vui
vxj

þ vuj
vxi

!
dS (10)

From Eq. (8), the axial strain rate, which is related to the
shrinkage, is expressed as

_E33 ¼ � Fs

2mA
(11)

Here, the sintering force Fs is defined as the difference between the
average pressure on the contact plane and the surface tension gsl
along the circumference

Fs ¼ �pAþ gsl (12)

Fig. 1. Geometry of the two particle model in three dimensions. The particle on the
upper side is translucent to show the contact area.
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