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a b s t r a c t

Pathway degeneracy of structure transformations with symmetry breaking underpins the functionalities
of a broad class of smart materials e the ferroics. Despite of its significance, there has been a lack of
rigorous theoretical description of pathway degeneracy, leading to several case-dependent treatments
which are not generally correct. In this work, we incorporate lattice correspondence into group theory to
define and determine pathway degeneracy during structural transformations. In particular we show that
a stabilizer can be determined by taking into account either the deformation relationship (under a given
lattice correspondence) or the orientation relationship, through which deformation variant is defined
rigorously and distinguished clearly from orientation variant. Such a definition provides a theoretical
foundation for investigating the formation of domain and defect structures arising from symmetry
breaking during structural phase transformations.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

From the crystallographic point of view, symmetry breaking
during structural transformations provides a natural means of
achieving self-organized polydomain structures. These domains
can switch from one to another by external fields such as stress,
electrical and magnetic fields, offering special “smart” properties
such as piezoelectricity, electro- and magneto-striction, super-
elasticity, shape-memory, and transformation toughening [1e5] to
name a few. The symmetry breaking attending a phase trans-
formation is understood on the basis of group theory [6e8], and the
concept of orientation variants (i.e., the number of crystallograph-
ically equivalent domains of the low symmetry phase) has been
established since 1970s [9,10]. Such a group theory description of
coexisting phases that are related by observed orientation re-
lationships (ORs) has profound influences on the development of
advanced geometrical theories of structures of hetero-phase in-
terfaces such as the Coincidence Site Lattice theory [11] and the O-
lattice theory [12]. However, such a group theory description ap-
plies to any two coexisting crystals, even if they were joined arti-
ficially without a transformation (e.g., epitaxial growth of one

crystal on top of the other during vapor deposition). It is the
number of crystallographically equivalent transformation path-
ways (TPs) for the structure change (i.e., the TP degeneracy or
deformation variant) that determines the reversibility of the trans-
formation and the formation of various defect structures such as
domain walls, twin boundaries and dislocations [13]. In order to
describe TP degeneracy during a structural phase transformation,
the fact that the two crystal structures are related by a deformation
under a given correspondence before and after the transformation
should be taken as an additional physical constraint besides the
crystal structure information.

To illustrate the difference between orientation degeneracy and
TP degeneracy at the intuitive level, we consider the relations be-
tween a square unit cell and a rectangular unit cell of two different
lattices with a common origin. If the rectangle is oriented such that
its long edge is parallel to an edge of the square, then two equiv-
alent orientation variants are dictated by the symmetry and given
OR. Likewise, if the long edge of the rectangle is made parallel to a
diagonal of the square, there would be two equivalent variants of
this OR. But in any other OR there would be four equivalent
orientation variants of the rectangle relative to the square. An OR is
defined whenever two crystals coexist, with or without contact.
Now suppose a rectangle is made by stretching a square along one
of its edges, i.e., with edge-to-edge correspondence. Clearly, there
are two equivalent deformation pathways that satisfy the* Corresponding author.
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prescribed correspondence, leading to the so-called correspon-
dence variant defined in martensitic transformation crystallog-
raphy [2,14]. Moreover, the number of correspondence variants is
independent of any rotation of the rectangle relative to the square,
i.e., it is independent of the OR for a fixed lattice correspondence
(LC) [15e18]. It has been recognized [19] that the symmetry of the
transformation strain, which includes the information of LC rather
than OR, should be considered in the study of pathway degeneracy
during martensitic transformations.

Thus the types of symmetry breaking and degeneracy are
determined by the types of relationships between two crystals that
one is considering, e.g., OR or LC. The former is characterized by
rigid-body rotation and translation, leading respectively to crys-
tallographically equivalent orientation variants and anti-phase
domain variants, both of which have been well addressed in the
literature [6,9]. The latter is characterized by a uniform lattice
distortion and an internal atomic shuffle, which can also be
described through the matching and splitting of Wyckoff position
[7,20e22]. Despite of its importance, several key issues in deter-
mining the latter degeneracy (referred to as TP degeneracy in this
study) have not been realized and well-addressed in the literature,
including: (1) besides the information of the symmetry groups of
individual crystals involved during the transformation, a relation-
ship connecting the two crystals of the parent and product phases
is necessary and critical, which could be a piece of information
characterizing the transformation pathway (e.g., LC); (2) the two
symmetry groups of individual crystals cannot be used directly in
Lagrange's Theorem [8], because it is not guaranteed that there is a
groupesubgroup relationship between them; instead, a stabilizer
(or intersection group) has to be determined first, which is strictly a
subgroup of the symmetry group of the parent phase and satisfies
the requirement of Lagrange's Theorem; (3) the effects of shuffle on
TP degeneracy should be included within the framework of group
theory. Overlook of the above issues may lead to case-dependent
treatments which are not generally correct. For example, to
exclude the effect of orientation dependence, one popular way to
determine TP degeneracy is by using proper symmetry operations
only, which is workable in some shape memory alloy systems [15].
However, such a treatment is limited not only because the de-
generacy caused by breaking of mirror symmetry cannot be
captured, but also it fails when dealing with reconstructive
martensitic transformations [13]. One classical counter-example is
the face-centered cubic (FCC) to body-centered cubic (BCC) trans-
formation through the Bain path in pure iron. The point group of
both FCC and BCC lattices are m3m, leading to only one pathway
according to this treatment, which is definitely contradict to the
three equivalent Bain pathways intuitively well-known in the
literature [16e19,23].

TP degeneracy plays a critical role in formulating theoretical
descriptions of structural phase transformations, as has been
demonstrated in the phenomenological theory of martensitic
crystallography (PTMC) [16e18] and Landau theory of phase
transformations [24]. Because of the lack of rigorous group theory
description of the TP degeneracy, however, orientation degeneracy
determined by the group theory formulation [9] using a particular
OR as the constraint has been used frequently in literature as the TP
degeneracy [25,26]. As has been discussed above, however, the TP
degeneracy should be determined by the constraint of LC and be
independent of OR. Consider again the classical FCC to BCC trans-
formation in steels. If the KurdyumoveSachs and Nishiya-
maeWasserman ORs commonly observed in the experiments are
used, then the number of orientation variants will be 24 and 12,
respectively. Only when the BakereNutting OR or Bain OR (not Bain
LC) is used, the number of orientation degeneracy equals the
number of TP degeneracy, which is 3. Note that the Baker-Nutting

OR has not been observed in experiments. Another well-known
example is the BCC to hexagonal-close-packed (HCP) structural
transformation in Ti-based and Zr-based alloys. Depending on the
experimentally observed ORs, including the Burgers, Potter,
PistcheSchrader and RongeDunlp [27], the number of orientation
variants can be systematically obtained through group theory [9].
However, the TP degeneracy for the Burgers path has yet been
determined rigorously, because of the difficulty caused by the in-
ternal atomic shuffle during the transformation.

In this work, we formulate a group theory framework to define
and determine TP degeneracy during structural transformations
that involve a lattice deformation. Through a change of basis, a
stabilizer can be determined by either LC or OR, leading to rigorous
definitions of TP degeneracy and orientation degeneracy within a
general framework. Such a definition of TP degeneracy is critical in
formulating Landau free energy dictated by the symmetry of
Hamiltonian and investigating deformation mechanisms that gov-
erns microstructural evolution and materials properties during
structural transformations. Several examples are presented,
through which not only the standardized mathematical procedure
to determine the degeneracies but also the symmetry related fea-
tures in terms of microstructures are described in great details.

2. Mathematical formulations of orientation variant and
deformation variant

We consider an a/b phase transformation, where the two
crystals have point groups Ha and Hb, respectively. Individual op-
erations in the two groups, ha2Ha and hb2Hb, can be represented
in matrices in particular coordinates. Symmetry dictated de-
generacy during the transformation is given by the following
relation [9,10]:

Na/b ¼ jHaj��Ja=b�� (1)

where jHaj is the order of the group of the parent phase, and Ja/b is
known as the stabilizer subgroup, it consists of symmetry opera-
tions that are preserved during the transformation. Eq. (1) follows
from the coset decomposition of a group (Ha) in terms of its sub-
group (Ja/b), and the quotient (called the index of Ja/b in Ha) is
guaranteed to be an integer by Lagrange's Theorem [8]. In some
particular phase transformations (e.g., ferroic phase transitions)
Ja/b ¼ Hb, which allows Eq. (1) to be expressed as the ratio of the
orders of the groups of the two phases (i.e., jHaj/jHbj). However,
such an expression not only obscures the fact that using Hb in the
denominator is only conditionally correct, but also overlooks the
dependence of the degeneracy on a critical link (e.g., OR or LC)
between the two groups. As pointed out by Cahn and Kalonji [9],
the orientation degeneracy should depend on the stabilizer (or
intersection group) dictated by the OR between two crystals, and
parallel conclusion could also be expected for TP degeneracy. In
general, the stabilizer is a subgroup of both Ha and Hb, and it
consists of operations that are common to the two groups, not
belonging to either group exclusively [9,10].

Considering the a crystal defined in the Ba basis, Ha can be
represented in Ba as Ha

a (similarly, Hb are represented in Bb as
Hb
b).Ba ¼ faai g and Bb ¼ fabi g, with i ¼ 1,2,3. In order to calculate

their intersection group, Ha and Hb should be represented in the
same basis, and an operator bT, can be used to link Ba and Bbwithout
loss of generality. The superscript used here indicates the crystal
lattice (a or b) that the vector (or operation) belongs to. Under the
action of a point operation ha, the a crystal will be self-coincident,
but every vector will be transformed to a new position
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