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a b s t r a c t

In this paper, the dynamic response of cable-stayed bridge loaded by a train of moving forces with
stochastic velocity is investigated. The cable-stayed bridge is modelled by Rayleigh beam with linear
elastic supports. The stochastic Melnikov method is derived and the mean-square criterion is used to
determine the effects of stochastic velocity and cables number on the threshold condition for the in-
hibition of smale horseshoes chaos in the system. The results indicate that the intensity of the random
component of the loads velocity can be contributed to the enlargement of the possible chaotic domain of
the system, and/or increases the chances to have a regular behavior of the system. On the other hand, the
presence of cables in cable-stayed bridges system increases it degree of safety and paradoxically can be
contributed to its destabilization. Numerical simulations of the governing equations are carried out to
confirm the analytical prediction. The effect of loads number on the system response is also investigated.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cable-stayed bridges have become very popular over the last
three decades because of their aesthetic appeal, structural effi-
ciency, enhanced stiffness compared with suspension bridges, ease
of construction and comparatively small size of structures. Re-
sponse prediction of this type of bridges subjected to randomly
moving excitations is important for engineering practice [1,2].

The vibrations of a suspension bridge under a random train of
moving loads are discussed in detail by Bryja and Śniady [3–5].
Generally, a very important parameter in the study of the vibration
of bridges caused by moving loads is the velocity. Although there
is scarcity of publications on this subject, one can mention the
work of Zibdeh [6] who included the effect of random velocities on
the dynamic response of a bridge traversed by a concentrated load.
Chang et al. [7] investigated the dynamic response of a fixed–fixed
beam with an internal hinge on an elastic foundation, which is
subjected to a moving mass oscillator with uncertain parameters
such as random mass, stiffness, damping, velocity and accelera-
tion. In the same impetus, Śniady et al. [8,9] and Rystwej et al. [10]

investigated on the problem of a dynamic response of a beam and
a plate to the passage of a train of random forces. In this study they
assumed that the random train of forces idealizes the flow of ve-
hicles having random weights and travelling at the stochastic ve-
locity. They show the effect of these stochastic quantities on the
mean deflection of the beam.

On one hand, in all of the above-mentioned research, only the
effect of stochastic parameters of the moving loads on the prob-
abilistic features of the beam response namely the mean square
amplitude and the probability density function is carried out. To
the best knowledge of the authors, the effects of stochastic fluc-
tuations of the load velocity and the number of cables on the
possible appearance of horseshoes chaos in the cable-stayed
bridge system have not been explored by the researchers yet. Thus
in this paper, based on the Melnikov approach, which is widely
used by most researchers [11–15], all these effects on the ap-
pearance of transverse intersection of perturbed and unperturbed
heteroclinic orbits and the route to chaos are investigated.

Following this introduction, the effective model of cable-stayed
bridge is presented in Section 2. Also, the random Melnikov ana-
lysis for the examination of the effect of a noisy part of velocity of
moving loads and cables effects on the threshold condition for the
inhibition of chaos is extended. Section 3 presents some numerical
simulations to validate the theoretical predictions. Finally, Section
4 is devoted to the conclusion.
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2. The bridge model

This section is devoted to the presentation of the system
(Section 2.1), the corresponding reduced modal equations (Section
2.2). The last Section 2.3 is devoted to the theoretical analysis of
the random Melnikov analysis applied to the proposed model.

2.1. Mathematical modelling

The dynamic model of a cable-stayed bridge system in-
vestigated in this paper and shown in Fig. 1(a) is the semi-harp
type with two symmetrical spans. The cable-stayed bridge is
modelled by using a Rayleigh beam theory [16] (in order to take
into account the high frequency motion of the beam) of finite
length L with geometric nonlinearities on elastic supports with
linear stiffness Ki

c subjected to an axial compressive loads Th
c due

to the total contribution of the horizontal component of the tensile
cables and a series of lumped loads p moving along the beam in
the same direction with the same stochastic velocity vk (see Fig. 1
(b)). We assume that the mass of the cables is negligible and they
are regularly spaced on the beam. Since all the stay cable ancho-
rage sections are fixed to move both horizontally and vertically,
the whole pylon is assumed to be fixed.

The deformed beam can be described by the transverse de-
flection ( )=W W X t, and the rotation of the cross section of the
beam θ¼ ( )θ X t, . By Considering the classical damping force model
for the viscosity materials and Newton's second law of motion for
an infinitesimal element of the beam, the equation of motion for

the small deformations ( )θ ⋍ ∂
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In which mb, EI, ρ, Ra, c, ( )W X t, are the beam mass per unit length,
the flexural rigidity of the beam, beam material density, the
transverse Rayleigh beam coefficient, the damping coefficient and

the transverse defection of the beam at point X and time t re-
spectively. Th

c is the axial compressive loads due to the total
contribution of the horizontal component of the tensile cables. In

Eq. (1), ∂
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the nonlinear rigidity of beam essentially due to the Euler law
which states that the bending moment of the beam is proportional
to the change in the curvature produced by the action of the load
[17,18]. This nonlinear term is obtained by using the Taylor ex-
pansion of the exact formulation of the curvature up to the second
order. The term on the right-hand side of Eq. (1) is used to describe
the series of random moving loads over the beam. ( )−X t tk k is the
distance covered by the kth force to the time t.

= ( − )t k d v1 /k 0¼deterministic arriving time of the kth load at the
beam. d is the spacing loads, δ (·) denotes the Dirac delta function,
Nv is the total number of moving loads. To facilitate a compact
representation of the equations, a window function εk is defined:
ε = 0k when the load has left the beam and ε = 1k while the load is
crossing the beam [19]. Nc is the number of cables acting on the
bridge and δ [ − ]X i L

Nc
give the position of each action. Ki

c is the

linear stiffness of the cables. Their expression according to the
particular characteristics of the stay cables is given by [22]
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where αi is the angle between the ith cable and the bridge deck, Ei,
Ai, Li are Young's Modulus, the cross section and the length of the
ith cable respectively. For a finite, simply supported beam, the
boundary and initial conditions have the forms
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It is well known that a more realistic and practical model of
highway traffic loads takes into account the features of the Poisson
process [20], or the ones of renewal counting process [21] to re-
present the vehicular traffic. So to derive the proposed model of
external forces, we take into account the randomness of the ve-
locity and assume the similar form of loads studied by Nikkhoo
et al. [19]. The random velocities are assumed to be Gaussian
distributed, i.e. that the loads travel with velocities vk Gaussian
distributed around the average speed v0 [8]

σ ξ( − ) = ( − ) = + ( − )

≤ ( − ) ≤ ( )

dX t t
dt

v t t v t t

X t t L0 4

k k
k k v k k

k k

0

Here ( − )v t tk k is the stochastic velocity of the kth force, v0 the
mean value of velocity, sv its standard deviation and ξ ( − )t tk k the
velocity disturbances which we assume to be independent and
stationary white noise random processes; i.e.

Fig. 1. Sketch of (a) the cable-stayed bridge system, (b) equivalent model under
stochastic moving loads. The gravitational forces are represented by arrows p,
whose separations are not uniform, for the speeds vk are not identical.
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