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a b s t r a c t

The two-dimensional free jet of an incompressible non-Newtonian power-law fluid is investigated. The
Reynolds number is defined in terms of the characteristic effective viscosity of the power-law fluid. The
boundary layer equations for a power-law fluid are derived in terms of the stream function. The free jet is
modelled by making the boundary layer approximation perpendicular to the axis of symmetry. The
conservation laws for the partial differential equation for the stream function are investigated using the
multiplier method and the conserved quantity for the free jet is obtained by integrating the elementary
conservation law across the jet. The Lie point symmetry of the partial differential equation for the stream
function which is associated with the elementary conserved vector is derived and it is used to obtain the
invariant form of the stream function. An analytical solution for the free jet in parametric form is derived.
The solution depends on the exponent n in the power law. For a shear thickening fluid ( > )n 1 it is found
that the jet is bounded in the lateral direction perpendicular to the axis of the jet and the equation of the
boundary is derived. For a Newtonian fluid ( = )n 1 and a shear thinning fluid ( < < )n0 1 the jet is un-
bounded in the direction perpendicular to the axis. The solution for =n 1/2 is a special case and has
exponential form. For < < ∞n1/2 the total flux of mass along the jet and the inflow velocity at the
boundary ( < < ∞n1 ) and at infinity ( < ≤ )n1/2 1 are finite. For < ≤n0 1/2 the solution is not physically
acceptable because the total flux of mass along the jet and the inflow velocity at infinity are infinite.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we investigate the two-dimensional free jet of a
power-law fluid. Industry and engineering are heavily reliant on
non-Newtonian fluids, in particular, on the non-Newtonian power-
law model due to its relative simplicity. Specific examples would
include the extraction of crude oil from petroleum products,
manufacturing of polymeric materials and inkjet printing. Power-
law fluids can be described as generalised Newtonian fluids as a
consequence of the variable viscosity of the fluid and the nonlinear
relationship between the shear stress and strain rate. Schowalter
[1] was the first to provide a derivation of the governing equations
of a pseudoplastic fluid. Numerical solutions for the boundary
layer equations of a power-law fluid for both shear thinning and
shear thickening fluids were developed by Acrivos et al. [2]. The
similarity solution of the boundary layer equations for a power-
law fluid was derived by Denier and Dabrowski [3]. Two-dimen-
sional and axisymmetric wakes of power-law fluids have been

studied by Rotem [4] and Weidman and Van Atta [5]. The validity
of the mathematical model for shear thinning fluids was in-
vestigated by Wu and Thompson [6].

Boundary layer theory can be extended to jet flows, which was
first done by Schlichting [7,8]. He determined the numerical so-
lution to the ordinary differential equation governing the steady
flow of a two-dimensional free jet. Bickely [9] provided an analytic
solution to this problem. The free jet of a non-Newtonian power-
law fluid was first considered by Shul'man and Berkovskii [10].
These authors derived the similarity form of the solution and re-
duced the partial differential equation to an ordinary differential
equation. Further, they solved the resulting differential equation
for values =n 1/2 and ≠n 1/2. However, they did not consider the
values >n 1/2 and <n 1/2 separately. They also did not discuss
the physical interpretation of their results. Kutepov et al. [11]
considered the same problem, where once again there was no
distinction made for values >n 1/2 and <n 1/2 and the inter-
pretation of the results for >n 1 did not predict the boundary for
the jet. Lemieux and the Unny [12] considered the numerical so-
lution of a two-dimensional free jet of a power-law fluid and were
the first to confirm that a boundary curve for a two-dimensional
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free jet of a power-law fluid exists. However, these authors found
that this boundary exists for all values of n. Mitwally [13] who also
solved the ordinary differential equation numerically found that
the boundary curve exists only for values >n 1 and not over the
entire range < < ∞n0 of n.

In this paper we derive the analytical solution in parametric
form for a two-dimensional free jet of an incompressible power-
law fluid. We investigate the solution and show that the jet is
bounded for >n 1 and unbounded for ≤n 1. We find that the si-
milarity solution has a different form when the parameter <n 1/2
from that when >n 1/2 unlike in [10,11]. We reconfirm the result
of Shul'man and Berkovskii [10], who considered the flux along the
jet, that a shear thinning jet for < ≤n0 1/2 is not physically
acceptable.

Fundamental to solving jet flow problems in fluid mechanics is
the derivation of a conserved quantity. Due to the homogeneity of
the boundary conditions in jet flow problems, the arbitrary para-
meter in the similarity solution cannot be obtained from the
boundary conditions. A conserved quantity for the jet is used to
determine this parameter and also to complete the solution by
obtaining the remaining constant of integration. For boundary
layer flow past a solid boundary the mainstream matching
boundary condition is not homogeneous and the arbitrary para-
meter can be derived. Schlichting [7] derived the conserved
quantity for the two-dimensional free jet by integrating Prandtl's
momentum boundary layer equation across the jet.

A significant, although challenging, requirement in the deri-
vation of a conserved quantity is that one needs to be well ac-
quainted with the physical properties of the problem. The diffi-
culties are removed by using a conservation law for the partial
differential equation which is a more systematic method to obtain
the conserved quantity. The method which we will use to derive
conservation laws is the multiplier method [14]. There are various
other approaches which can be applied to obtain conservation
laws [15]. The multiplier approach allows us to deduce a basis of
conserved vectors and these conserved vectors together with the
boundary conditions are critical in determining the conserved
quantities. A significant feature of this work is that we incorporate
the conservation law into the solution to the problem by reducing
the partial differential equation to an ordinary differential equa-
tion with the aid of the Lie point symmetry associated with the
conserved vector that generates the conserved quantity. Much
attention has been given to obtaining the conserved quantities for
Newtonian fluids in jet flow models. Naz et al. [14] determined the
conserved quantities for both axisymmetric and two-dimensional
laminar jets. For power-law fluids a systematic investigation of
conservation laws and the corresponding conserved quantities for
jet flow problems does not appear to have been undertaken.

Although the problem of boundary layer flow past a solid
boundary has usually been solved numerically, jet flow problems
for Newtonian fluids can generally be solved analytically. This in-
cludes free jets, liquid jets and wall jets [16]. Recently Lie group
analysis has been applied to solve jet flow problems for Newtonian
fluids in which a linear combination of the Lie point symmetries of
the partial differential equation is used to derive a group invariant
solution. Mason [17] and Mason and Hill [18] used this approach to
derive group invariant solutions for laminar and turbulent two-
dimensional free jets. A more efficient method to obtain the in-
variant solution is to first derive the Lie point symmetry associated
with the conserved vector which yields the conserved quantity for
the jet and to use this Lie point symmetry to generate the invariant
solution. The relationship between Lie point symmetries and
conservation laws for a partial differential equation was first de-
rived by Kara and Mahomed [19,20]. From the double reduction
theorem of Sjoberg [21,22] the ordinary differential equation ob-
tained from the reduction of the partial differential equation can

be integrated once. This approach was used by Mason and Hill [23]
to derive the invariant solution for a turbulent axisymmetric free
jet and by Mason and Anthonyrajah [24] to analyse turbulent flow
in a pipe. We note that the solutions obtained using the Lie group
method are not the only admissible solutions to boundary layer
problems. Burde [25] found explicit similarity solutions to the
boundary layer equations which cannot be obtained using the Lie
group method. The approach used by Burde [25] allows for the
partial differential equation to be reduced to a system of ordinary
differential equations rather than to a single ordinary differential
equation. More general similarity transformations allow for other
exact solutions which cannot be found using the standard Lie
group method [26].

The ordinary differential equations obtained by reducing the
partial differential equations for the two-dimensional free jet of a
Newtonian fluid and power-law fluid are autonomous and as such
can be solved analytically. The axisymmetric free jet for a New-
tonian fluid and a power-law fluid are described by non-autono-
mous ordinary differential equations. For the Newtonian fluid the
non-autonomous ordinary differential equation can be solved
analytically [8] but for the power-law fluid no analytical solution
has been derived and it is solved numerically. Serth [27] derived
the numerical solution for an axisymmetric free jet of a power-law
fluid. Mitwally [13] obtained numerical solutions to the two-di-
mensional and axisymmetric free and wall jets of a power-law
fluid.

An outline of the study is as follows. In Section 2, we present a
thorough derivation of the mathematical model for the two-di-
mensional free jet of a non-Newtonian power-law fluid. The con-
servation laws and the conserved quantities for the two-dimen-
sional free jet are obtained in Section 3. We derive the associated
Lie point symmetry and deduce the form of the invariant solution
in Section 4. In Section 5 analytical solutions in parametric form
are presented for the whole range of shear thinning and shear
thickening power-law fluids. The properties of the analytical so-
lutions are analysed in Section 6. Finally the conclusions are drawn
in Section 7.

2. Mathematical model

Consider a steady two-dimensional free jet consisting of an
incompressible power-law fluid. The jet emerges from a long
narrow orifice in a wall into surrounding fluid which consists of
the same power-law fluid at rest. The x-axis is along the axis of
symmetry of the jet and the origin of the coordinate system is at
the orifice. We present a complete derivation of the model in order
to make the paper self-contained and to clarify the assumptions
made in boundary layer theory for a power-law fluid. Further, we
define the Reynolds number in terms of the characteristic effective
viscosity.

The constitutive equation for an incompressible power-law
fluid is

τ δ= − + ( )p S 2.1ik ik ik

where τik is the Cauchy stress tensor,

μ= ( )S A , 2.2ik e ik
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μ e is the effective viscosity,
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