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a b s t r a c t

Parametric resonance is one of the key topics in studying the dynamics of structures. In this paper,
dynamic analysis of rotating beams with varying rotational speed in the presence of principal parametric
resonance is investigated. The equations of motion are based on the von Karman strain–displacement
relationship. The beam is made of isotropic material with rectangular cross section. The flapping and
axial motions are considered along the thickness and length of the beam, respectively. The Galerkin
discretization approach is implemented to determine the natural frequencies. The method of multiple
scales is applied directly to the ordered equations of motion for the dynamic stability analysis. The
method of multiple scales delivers a closed form relation for the stability region boundary in terms of the
adimensional rotational speed, axial mode frequency and damping ratio coefficient. The differential
quadrature method is employed to validate the multiple scales results. A comprehensive study is ac-
complished to find the effects of damping ratio coefficient and mode number on the critical parametric
excitation amplitude and the parametric excitation frequency. Damping ratio coefficient, mode number
and parametric excitation amplitude influences on the stability region boundaries are also examined.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the vast implementation of rotating blades in various
aerospace structures and also in the wind and water turbines, the
dynamic analysis of these structures including the stability study
is essential. To reduce the possibility of fatigue failure in these
structures, studying the possibility of resonance occurrence in-
cluding the parametric one is one of the concerns of the designing
engineers.

The unwanted parametric resonance can occur in rotating beams
with varying rotational speed. Variation in rotating speed can be
produced by the aerodynamic forces. Discarding the source of the
variation, if the ratio of the frequency variation of the rotational
speed is proportional to one or any combination of the natural
frequencies, parametric excitation can happen. On the other hand,
large amplitude vibrations can be originated from parametric ex-
citation, so the nature of this experience, i.e. parametric excitation
can be risky to the structures.

When the excitation frequency is close to twice of a natural

frequency, the first parametric resonance zone, i.e. principal
parametric resonance occurs, while if the excitation frequency is
close to any of the natural frequencies, the second parametric re-
sonance zone, i.e. parametric excitation arises [1].

Crespo da Silva and Hodges [2] investigated the effects of
higher order terms as well as aerodynamic forces on the instability
of the coupled elastic flapping, lead-lagging, and torsional motions
of the uniform straight rotating blades. Crespo da Silva [3] ob-
tained the equilibrium solution and eigen-solutions of perturbed
rotating beams via aerodynamic forces and investigated the sta-
bility of the structure about its equilibrium solution. Chin and
Nayfeh [4] implemented the direct method of multiple scales
(MMS) for nonlinear dynamic analysis and stability study of a
clamped-hinged beam subjected to the principal parametric re-
sonance. Ye et al. [5] studied the nonlinear dynamic behavior of a
parametrically excited simply supported rectangular thin plate
based on the von Karman strain–displacement relationships. The
model considered symmetric cross-ply laminated composite
plates and they also included the nonlinear damping effects. Using
numerical method, the first-order averaged equations obtained by
the MMS were analyzed to attain the steady state bifurcation re-
sponses. Chen and Yang [6] investigated the stability in transverse
parametric vibration of axially accelerating viscoelastic beams. The
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MMS was applied directly to the governing equations of motion.
The stability conditions were obtained for the combination para-
metric resonance and also principal parametric resonance.
Ghayesh and Balar [7] studied the instability and bifurcation of
axially moving Rayleigh beams, using MMS. De Rosa et al. [8] ex-
amined the dynamic behavior of a clamped beam subjected to a
sub-tangential follower force at the free end. They determined the
flutter critical load using differential quadrature method (DQM).
Saravia et al. [9] examined the dynamic stability analysis of thin-
walled composite rotating beams and the influences of the layup
and rotational speed on the stability analysis. Turhan and Bulut
[10] investigated the rotational speed effects on the nonlinear
dynamics of a rotating beam, such as switching from hardening to
softening and harmonic or super-harmonic jump phenomena by
applying the Lindstedt–Poincaré method and the MMS to the
equations of motion (EOM). Valverde and Garcia-Vallejo [11] stu-
died on the stability of a rotating beam, in which the effects of
Coriolis forces were considered in their formulation, by using the
absolute nodal coordinate formulation in comparison with a fully
geometrically exact nonlinear formulation based on the Cosserat
theory of rods. Ghayesh [12] studied the parametric vibrations and
the stability of an axially accelerating string guided by a non-linear
elastic foundation using the MMS. Some numerical simulations
were presented to highlight the effects of system parameters on
vibration, natural frequencies, frequency-response curves, stabi-
lity, and bifurcation points of the system. Ding and Chen [13] in-
vestigated the steady-state periodical response of an axially
moving viscoelastic beam with hybrid supports via MMS and nu-
merical confirmation by DQM. Numerical examples were pre-
sented to demonstrate the effects of the boundary constraint
stiffness on the amplitude and the stability of the steady-state
response. Arvin and Bakhtiari-Nejad [14] applied the MMS to the
discretized EOM of rotating beams to construct the Nonlinear
Normal Modes (NNMs) with or without internal resonances. They
also studied the instability and bifurcations of the NNMs in the
presence of internal resonances. Chen and Tang [15] investigated
the parametric resonance stability region boundaries of axially
accelerating viscoelastic beams using the MMS and DQM. Arvin
et al. [16] examined the softening or hardening behavior of iso-
tropic rotating beams mode frequencies and the rotational speed
effects on the type of nonlinearity, either hardening or softening
via MMS. The EOM were obtained [17] using the geometrically
exact approach based on the Cosserat theory of rods. The similar
study was conducted by Arvin and Lacarbonara [18] for composite
rotating beams. Rhoads et al. [19] explored the highly non-linear
dynamic behavior of a new class of parametrically excited, elec-
tromagnetically actuated micro cantilevers using the perturbation
methods and the bifurcation analysis. The provided results clar-
ified the effects of fifth-order non-linearities on a parametrically
excited micro resonator. Franzini and Mazzilli [20] derived a uni-
directional three-mode reduced-order model for the lateral mo-
tion of a slender and immersed rod subjected to harmonic and
axial top motion. They concluded that, within the principal para-
metric instability region of the first mode, the time history cor-
responding to the second classic mode oscillates with the domi-
nant frequency of the first classic mode. Awrejcewicz et al. [21]
proposed a method to study dynamical instability and non-linear
parametric vibrations of symmetrically laminated plates of com-
plex shapes with different cutouts. In order to show the advantage
of the developed approach, instability zones and response curves
for the layered cross- and angle-ply plates with external cutouts
were constructed and discussed.

In this paper, the stability analysis of rotating beams with
varying rotational speed in the presence of principal parametric
resonance is investigated. The EOM are based on von Karman
strain–displacement relationship. The MMS is applied directly to

the EOM subjected to the principal parametric resonance. The
MMS renders a closed form relation for the stability region
boundary and critical parametric excitation amplitude and fre-
quency in terms of the adimensional parameters such as rotational
speed, mode frequency and damping ratio coefficients. The DQM is
also implemented to validate the MMS results. The results are
presented in the form of tables and figures.

2. Equations of motion

A schema of a rigid rotating beam is presented in Fig. 1. R, h, b
and L are the rotor radius, thickness, width and length of the beam,
respectively. The beam is rotating about Z-axis with Ω as rota-
tional speed. x parameter is used as the spatial variable which
shows the position of each cross section measured from the cross
section linked to the rotor.

The deformed shape of the beam is presented in Fig. 2. u is the
deformation vector of a cross section at x which is

≔ ( ) = ( )^ + ( )^u u x t w x t z u x t x, , , in which ( )w x t, and ẑ are, respec-
tively, the flapping deformation and the unit vector along the z-
axis and ( )u x t, and x̂ are, respectively, the axial deformation and
the unit vector along the x-axis.

Assuming the von Karman strain displacement relations, the
adimensional flapping and axial EOM and the associated boundary
conditions for isotropic beams with rectangular cross section are,
respectively, as [14]:
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in which (·)LF and (·)LA are, respectively, the linear flapping and
axial stiffness operators, ( )n u w,F
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respectively, the second and third order geometric nonlinear
terms. (·)Bi and (·)nB are the boundary conditions operators re-
ported in Appendix A. The ∂ sign stands for the partial differ-
entiation of the associated parameter with respect to its following
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Fig. 1. A schema of the rigid rotating beam.
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