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a b s t r a c t

A new nonlinear planar beam formulation with stretch and shear deformations is developed in this work
to study equilibria of a beam under arbitrary end forces and moments. The slope angle and stretch strain
of the centroid line, and shear strain of cross-sections, are chosen as dependent variables in this for-
mulation, and end forces and moments can be either prescribed or resultant forces and moments due to
constraints. Static equations of equilibria are derived from the principle of virtual work, which consist of
one second-order ordinary differential equation and two algebraic equations. These equations are dis-
cretized using the finite difference method, and equilibria of the beam can be accurately calculated. For
practical, geometrically nonlinear beam problems, stretch and shear strains are usually small, and a good
approximate solution of the equations can be derived from the solution of the corresponding Euler–
Bernoulli beam problem. The bending deformation of the beam is the only important one in a slender
beam, and stretch and shear strains can be derived from it, which give a theoretical validation of the
accuracy and applicability of the nonlinear Euler–Bernoulli beam formulation. Relations between end
forces and moments and relative displacements of two ends of the beam can be easily calculated. This
formulation is powerful in the study of buckling of beams with various boundary conditions under
compression, and can be used to calculate post-buckling equilibria of beams. Higher-order buckling
modes of a long slender beam that have complex configurations are also studied using this formulation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Developing geometrically nonlinear models for beams and
cables is an important subject in academic research [1,2] and en-
gineering applications such as compliant mechanisms [3–5] and
micro- and nano-electro-mechanical systems [6,7]. In compliant
mechanisms, a pseudo-rigid-body (PRB) model for a beam is
usually developed for their design and analysis. An analytical so-
lution for the beam under end loads would be useful. Elliptic-in-
tegral solutions for a large-deflection Euler–Bernoulli cantilever
beam with end loads have been given in Ref. [3]. While they are
valid only for simple geometries and loadings, they have been
widely used in developing various PRB models [4,5].

Formulations of beams and cables are generally considered to
be different, but in practice, it is difficult to make such a distinc-
tion. Irvine [8] pointed out that a long slender beam behaves like a

cable in the large; on the other hand, the small bending stiffness of
a slack cable can be important in calculation of its equilibrium and
dynamic response [9]. The study of equilibria of long slender
beams is usually referred to as Kirchhoff–Love rod theory [1], and
many researchers have made contributions to this area. Santillan
et al. [10] theoretically and experimentally studied equilibria and
stability of an elastic beam with two ends clamped together.
Antman [2] provided a detailed derivation of equations of a beam
using the rod theory, and Svetlitsky [11] discussed a similar topic
from an engineering viewpoint. Kim and Chirikjian [12] studied
equilibria and free vibration characteristics of a rod using a group-
theoretical approach. Hodges [13] provided a systematic study on
formulations of beams made of composite materials with arbitrary
cross-sections, which can describe both slender and thick beams.
Kumar [14] developed a generic model for partial delamination in
composite beams using the finite element method (FEM). Romero
et al. [15] developed a torsion-free non-linear beam model for
beam-like slender structures whose cross sections can withstand
only traction, shear, and bending.

In geometrically exact beam theories [16–18], spatial
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discretization of shear strains of cross sections can lead to some
numerical issue called shear locking. Pai [19] pointed out that
shear locking can be caused by combining the bending rotation
and the shear rotation into one bending-shear rotation variable
and reducing the order of the beam theory such as the Ti-
moshenko beam theory. In numerical studies of nonlinear beams
such as the FEM [20] and the absolute nodal coordinate formula-
tion (ANCF) [21], bending and stretch deformations can be easily
considered, but the shear deformation is usually neglected since it
is so small, which leads to an Euler–Bernoulli beam model [22]. A
new planar Rayleigh beam model was developed by Zhu et al. [9]
using the slope angle of its centroid line. It uses much fewer
number of generalized coordinates compared with the FEM. In
practice, the magnitude of the shear strain can be larger than that
of the stretch strain; a nonlinear model with stretch but without
shear would not be appropriate in this case.

In this work, a planar beam is described by the slope angle and
stretch strain of its centroid line, and shear strains of cross sec-
tions, so that bending, stretch, and shear deformations can be fully
described, which extends the work in [9] where only the slope
angle is considered. Static equations of equilibria are derived using
the principle of virtual work and discretized using the finite dif-
ference method (FDM). The shear strain is expressed as a depen-
dent variable, and the discretized model has no shear locking.
When stretch and shear strains are small, an approximate solution
can be obtained from a solution of the corresponding Euler–Ber-
noulli beam problem. Approximate stretch and shear strain dis-
tributions along the beam are determined from the slope angle
distribution and compared with those from the FDM. Buckling
loads of beams [23] are studied using the current formulation, and
post-buckling equilibria of beams with various boundary condi-
tions are accurately calculated. Higher-order buckling modes of a
long slender beam that have complex configurations are also
studied using the current formulation.

2. Nonlinear formulation of a planar beam under end forces
and moments

Consider a planar beam of length L shown in Fig. 1. A cross-
section of the beam can be described by an undeformed arc-length
coordinate s along its centroid line, where ≤ ≤s L0 . Suppose that
cross-sections of the beam remain to be planar after deformation.
General deformation of a planar beam includes bending and
stretch deformations of its centroid line, and shear angles or
strains of its cross-sections. The slope angle θ ( )s , the shear strain
γ ( )s , and the stretch strain ϵ( )s are used to describe the config-
uration of the deformed beam, and spatial coordinates of the
particle on the centroid line at the cross-section corresponding to
the arc-length coordinate s are

∫
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where ( )X Y,0 0 are coordinates of the particle on the centroid line
at the cross-section corresponding to the arc-length coordinate
s¼0. The elastic potential energy of the beam is
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where E is Young's modulus, G is the shear modulus, k(s) is the
shear correction factor of the cross-section corresponding to the
arc-length coordinate s, and A(s) and I(s) are the area and moment
of inertia of the cross-section; the derivation is shown in Appendix
A. Let

ϕ θ γ( ) = ( ) − ( ) ( )s s s , 3

which is the bending angle of the cross-section corresponding to
the arc-length coordinate s. The elastic potential energy in Eq. (2)
becomes
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and its variation is
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where a prime denotes differentiation with respect to s. Suppose

that there are external concentrated forces ( )= F FF ,x y
T

0
0 0 and

( )= F FF ,x y
T

1
1 1 , and external concentrated moments m0 and m1

applied at two ends of the beam, and these forces and moments
can be either prescribed or resultant forces and moments due to
constraints. By Eqs. (1) and (3), one has
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The virtual work done by the external forces and moments are
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Substituting Eq. (6) into Eq. (7) yields
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Force and moment balance equations and static equations of
equilibria of the beam are derived from the principle of virtual
work δ δ= :

Fig. 1. Description of the configuration of a planar beam with large deformation
using its slope angle θ ( )s , stretch strain ϵ( )s , and shear angle or strain γ ( )s .
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