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a b s t r a c t

A coupled diffusion-deformation, multiphase field model for elastoplastic materials is presented. The
equations governing the evolution of the phase fields and the molar concentration field are derived in a
thermodynamically consistent way using microforce balance laws. As an example of its capabilities, the
model is used to study the growth of the intermetallic compound (IMC) Cu6Sn5 during room-
temperature aging. This IMC is of great importance in, e.g., soldering of electronic components. The
model accounts for grain boundary diffusion between IMC grains and plastic deformation of the
microstructure. A plasticity model with hardening, based on an evolving dislocation density, is used for
the Cu and Sn phases. Results from the numerical simulations suggest that the thickness of the IMC layer
increases linearly with time and that the morphology of the IMC gradually changes from scallop-like to
planar, consistent with previous experimental findings. The model predicts that plastic deformation
occurs in both the Cu and the Sn layers. Furthermore, the mean value of the biaxial stress in the Sn layer
is found to saturate at a level of �8 MPa to �10 MPa during aging. This is in good agreement with
experimental data.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Over the past years phase field modeling has evolved into a
powerful tool for computational materials science. One advantage
of phase field models is that there is no need to explicitly track the
position of interfaces during microstructural evolution. Instead, the
position of the interfaces is implicitly given by the evolution of the
phase field variables used to describe the microstructure. This
makes it possible to simulate complex polycrystalline microstruc-
tures without making assumptions on, e.g., the shape of the grains
[1]. Phase field models have been used to study, for example, so-
lidification processes and dendritic growth [2,3], recrystallization
[4], and martensitic phase-transformation [5]. Another phenomena
to which phase field modeling is well adapted is growth of inter-
metallic compounds (IMC). The focus of the present work is the IMC
in the CueSn system. These IMC are of great importance due to

their role in soldering of electronic components. The recent tran-
sition to lead-free solders, driven by environmental concerns and
legislation, have further increased the interest for the CueSn sys-
tem, both from experimental [6e13] and modeling [14e18]
perspectives.

During a soldering process, a layer of the intermetallic com-
pound Cu6Sn5 (h-phase) will form at the interface between the Cu
substrate and the liquid solder [9]. A small amount of IMC is
necessary to achieve sufficient bonding between the substrate and
the solder. However, in the presence of too much IMC, the me-
chanical properties of the solder joint will degrade due to the
brittleness of the intermetallic phase [19]. The thickness of the IMC
will increase during aging and the growth of the Cu6Sn5 phase will
introduce stresses in the surrounding microstructure [8]. These
stresses are believed to be responsible for another reliability
concern in the electronics industry, namely the growth of tin
whiskers [20].

The formation and growth of intermetallic compounds in the
CueSn system has been previously studied using the phase field
method. A one-dimensional model of the growth of Cu6Sn5 was* Corresponding author.
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developed by Umantsev in Ref. [17]. In this model the phase fields
represent ordering and crystallization rather than individual grains.
Huh et al. [14] developed a model for simulating growth of Cu6Sn5
between a Cu substrate and molten solder. Based on the model by
Huh and coworkers, several additional studies have been pre-
sented, e.g. Refs. [15,16]. None of these models, however, take the
mechanical behavior of the material into account. In Ref. [18], the
stress build-up caused by the growth of IMC is simulated using the
finite elementmethod. Themodel in Ref. [18] is uncoupled and only
deformation is taken into account while the growth of IMC is added
based on curve fitting of experimental data.

In this paper, we present a coupled diffusion-deformation,
multiphase field model capable of simulating both the growth of
the Cu6Sn5 phase and the associated build-up of stresses. The
equations governing the evolution of the simulated microstructure
are derived in a thermodynamically consistent way using the
concept of microforces [21,22] and the constitutive framework
developed by Ammar et al. [23]. The model is used to study the
growth behavior of Cu6Sn5 during isothermal aging at room
temperature.

The paper is structured in the following way: In Section 2 the
multiphase field model is derived, starting from a dissipation
inequality and a postulated free energy. In Section 3 and Section 4
numerical aspects of themodel and the choice of model parameters
are discussed. Results from the simulations are presented in Section
5. The paper is closed with some concluding remarks in Section 6.

2. Multiphase field model

In multiphase field models a polycrystal microstructure is rep-
resented by a set of non-conserved phase fields
f ¼ (fa(t,X),fb(t,X),…,fn(t,X)), where each phase field represents
one grain in the microstructure. The phase fields are functions of
time, t, and spatial coordinates, X. Grain boundaries are taken as the
regions where two or more phase field variables vary smoothly
between 0 and 1. The smooth variation occurs over some distance,
creating a diffuse interface region. Based on the properties of each
phase present at the interface, the material properties of the
interface region can be estimated using the interpolation function
introduced in Ref. [15]:

hiðfÞ ¼
f2
iP
jf

2
j

; (1)

where the sum in the denominator is taken over all phase fields, i.e.
j¼ 1 … n.

To simulate diffusion, conserved field variables
x¼ (xa(t,X),xb(t,X), … ,xn(t,X)), representing the molar fraction in
each grain is used. The molar fraction fields are related to the global
molar concentration field c through

c ¼
X
n

hn
xn
Vm

; (2)

where the interpolation function hi in (1) is used to interpolate
between the molar fraction field corresponding to each phase field
and where Vm is a constant molar volume.

The derivation of the equations governing the evolution of the
phase fields and the concentration field is presented below. The
derivation is based on the framework developed by Ammar et al.
[23]. In the present work, this framework is extended to a multi-
phase setting by making use of the interpolation function (1) and
by formulating the free energy and other quantities as summations
over all phase fields. Following [21] and [22], a system of

microforces is associated with each phase field. These forces
represent configurational forces acting on the crystal lattice. The
microforce system belonging to phase field a comprises an internal
microstress vector xa and a scalar microforce pa, as well as an
external microforce ga. The microforces in the other phases are
defined analogously. In the same way as the Cauchy stress s is
energy-conjugated with the gradient of the displacement Vu, pa

and xa are energy-conjugated with fa and Vfa, respectively. Each
microforce system is presumed to follow a balance law, cf. [21], of
the form

V$xi þ pi þ gi ¼ 0: (3)

The termmicroforce system is motivated by (3) having the same
form as the equilibrium equation for the Cauchy stress,

V$sþ b ¼ 0; (4)

where b denotes the body force vector.

2.1. Dissipation inequality

Following the procedure in Ref. [23], with the enhancement that
the power densities are formulated as sums over all phase fields,
the first and second laws of thermodynamics result in a Clausius-
Duhem inequality,

�
X
i

pi
_fi þ

X
i

xTi V
_fi þ s : _ε� _f þ m _c� JTVm � 0; (5)

where ε ¼ ε
e þ ε

* þ ε
p is the total strain, consisting of elastic strains

ε
e, transformation strains ε*, and plastic strains εp. In (5), a tensorial
contraction over two indices is denoted by (,):(,). The chemical
potential and the diffusion flux are denoted m and J respectively and
a superposed dot denotes differentiation with respect to time. The
free energy density f¼ f(f,Vf,c,εe,k) is taken as a function of the set
of phase fields f, their gradients Vf, the global concentration field
c, the elastic strain ε

e and a set of internal variables k related to
plasticity in terms of the evolving dislocation density, to be speci-
fied later on. Using the chain rule to calculate the time derivative of
f and inserting it into (5) gives

�P
i
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vfi

�
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�
: _εe þ s : _εp � JTVm�

X
i

vf
vki

_ki � 0:

(6)

To ensure that the second law of thermodynamics is fulfilled, (6)
should hold for any combination of f,Vf,c,εe, and k. We can
therefore extract state laws for the internal microstress, the
chemical potential and the Cauchy stress:

xi ¼
vf

vVfi
; m ¼ vf

vc
; s ¼ vf

vεe
: (7)

Inserting the state laws into (6), results in the dissipation
inequality

D ¼ �
X
i

pdis
i

_fi � JTVmþ s : _εp �
X
i

Kik
_
i � 0; (8)

where pdis
i ¼ pi þ vf

vfi
and Ki ¼ vf/vki. From the dissipation inequality

it is possible to identify three dissipative processes. The first term
represents the phase field dissipation, which is related to the
rearrangement of atoms during the evolution of the phase fields
[23]. The second term is the mass transport caused by diffusion and
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