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a b s t r a c t

This paper deals with damped transverse vibrations of elastically coupled double-beam system under
even compressive axial loading. Each beam is assumed to be elastic, extensible and supported at the
ends. The related stationary problem is proved to admit both unimodal (only one eigenfunction is in-
volved) and bimodal (two eigenfunctions are involved) buckled solutions, and their number depends on
structural parameters and applied axial loads. The occurrence of a so complex structure of the steady
states motivates a global analysis of the longtime dynamics. In this regard, we are able to prove the
existence of a global regular attractor of solutions. When a finite set of stationary solutions occurs, it
consists of the unstable manifolds connecting them.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we investigate the properties of damped trans-
verse vibrations and dynamical buckling of a coupled double-
beam system under even compressive axial loading. The system
models a sandwich structure with an elastic filler. It is composed
of two equal WK-beams (according to the nonlinear model of
Woinowsky-Krieger [37]), which are connected by linear springs
and simply supported at the ends (see Fig. 1).

The in-plane dynamics is ruled by the following nonlinear system:
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where the unknown variables [ ] × →+ u L: 0,i (i¼1,2) represent
the downward deflections in the vertical plane of the midline of the
beams with respect to their reference configuration at rest. Both
beams are hinged at their ends, so that

( )( ) = ( ) = ∂ ( ) = ∂ ( ) = ∈ [ ∞) = 2u t u L t u t u L t t i0, , 0, , 0, 0, , 1, 2.i i xx i xx i

The unknown fields are required to satisfy the following initial con-
ditions:

( ) = ( ) ∂ ( ) = ( ) ∈ [ ] = ( )u x u x u x v x x L i, 0 , , 0 , 0, , 1, 2, 3i i t i i
0 0

where u1
0, u2

0, v1
0 and v2

0 are given functions which fulfill (2). The WK-
beams are assumed to have equal length L and unitary mass. In the
reference (natural) configuration they are straight and parallel, and
their spacing is d. They are connected by linear elastic springs with
common stiffness κ and free length d. Sources fi, i¼1,2, represent the
given vertical load distributions. The positive constants δ and ν denote
the flexural rigidity of the beams and the viscosity of the external
environment, respectively. Finally, γ is a positive constant, whereas the
parameter ℓ summarizes the effect of the axial force acting at one end
of each beam and is positive when both beams are stretched, negative
when compressed.
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A derivation of the WK-beam model within a thermoelastic
framework can be found in [18]. According to the modeling ap-
proach devised therein, the WK-beam equation is a simplification
of the nonlinear von Kármán one-dimensional model, where
longitudinal (horizontal in our case) displacements are condensed
by integrating the corresponding equation in which longitudinal
inertia is neglected. Unlike the usual Euler–Bernoulli linear theory,
a nonlinear but uniform term accounting for extensibility of the
beam is retained into the equation of the transversal vibration. We
stress that all material constants in (1) are dimensionless (see [18]
for details). In particular
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where h and D are the thickness of the beam and its longitudinal
displacement at the ends, respectively. As usual, both are assumed
to be considerably shorter than the length L. Finally, we remark
that the elongation of the coupling springs must take account of
the horizontal displacements of their anchor points. Nevertheless,
in (1) the strain in the springs is approached by the difference
between the vertical displacements of the two beams. This may be
accounted for assuming the maximum horizontal displacement,
| |D , to be negligible if compared with the reference spacing of the
beams, namely | |⪡D d.

System (1) may be also used to describe out-of-plane oscilla-
tions, both vertical and torsional, of a girder bridge where the road
bed is modeled by an elastic rug connecting two lateral WK-beams
(see Fig. 2). In this case, however, the lateral movements of the
beams are neglected by the model.

Although all results obtained hereafter apply to both material
models, for the sake of definiteness we shall refer to the former,
only. In addition, due to the recasting of the problem into an ab-
stract setting, we stress that the present analysis can be easily
extended to (Berger) plate-type sandwich structures with hinged
and normally loaded boundaries. In spite of a relatively wide lit-
erature concerning statics and dynamics of a single WK-beam (see
e.g. [2,3,5,7,8,14,15,19,22,31,37] and references therein), we are
not aware of analytic studies which consider the elastic coupling of
two or more nonlinear beams of this type. On the other hand,
mathematical models of sandwich beam-type and plate-type
structures raised a wide interest in the literature, due to their re-
levance in many branches of modern civil, mechanical and aero-
space engineering. In particular in the 80s the phenomenon of
nonlinear buckling mode interaction stimulated much interest and
has been investigated by many authors. In particular we recall the
fundamental contribution by Budiansky [11] and the many tech-
nical papers by Sridharan (see for instance [4,32]). Recently, after

some pioneer works (see, for instance, [23,29]) concerning inter-
action buckling between two beams, a lot of papers deal with
mechanical properties of axially loaded and elastically connected
linear double beam systems (see, for instance, [21,25,26,
35,36,38,39]).

The aim of this paper is to give a contribution on this subject by
scrutinizing statics and dynamics of the initial boundary value
problem (1)–(3). Its novelty and relevance relies on the complete
characterization of the long time behavior, which emphasizes the
different behavior of the nonlinear system (1) with respect to
double-beam linear systems previously considered. It is worth
noting that in a wider context concerning the localization of vi-
bration modes and buckling patterns [24,27,30], nonlinearities
play the same role than imperfections do in linear systems.

The occurrence of a very complex structure of the steady states
motivates a global analysis of the longtime dynamics of system (1)
(Sections 4 and 5). In this regard, due to the dissipative nature of
the system (ν > 0), we are able to prove the existence of a global
regular attractor of solutions. In particular, when a finite set of
stationary solutions occurs, the global attractor is given by the
union of the unstable manifolds connecting them (Section 5.3).

2. Preliminary results

Introducing a suitable functional framework, we recast the
original system (1) into an abstract setting. Let ( 〈· ·〉 ∥·∥)H, , , be a
real Hilbert space, and let ( )⋐ →A A H H: be a strictly positive
selfadjoint operator, whose distinct eigenvalues and eigenfunc-
tions are λ > 0i and ψi, ∈ i , respectively. For τ ∈ , we introduce
the Hilbert spaces
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The symbol 〈· ·〉, will also be used to denote the duality product
between τH and its dual space τ−H . In particular, we have the
compact embeddings ⋐τ τ+H H1 , along with the generalized Poin-
caré inequalities
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and we define the family of product Hilbert spaces

τ= × × × ∈ [ ]τ τ τ τ τ+ +H H H H , 0, 2 .2 2

In all these notations the index τ is omitted when τ = 0. Then, we
state on the following abstract Cauchy problem:
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The original problem (1)–(3) can be viewed as a special case of
(5)–(6) by assuming = ∂A xxxx and = ( )H L L0,2 . We stress that this
abstract formulation cannot be applied when boundary conditions
differ from (2) (for instance, if clamped–clamped or hinged–
clamped ends are prescribed). Really, the original coupled system
can be described by means of a single operator A only if the beams
are assumed to be hinged at their ends. Afterwards, a weak solu-
tion of (5)–(6) will be denoted by σ →+: ,

σ ( ) = ( ( ) ∂ ( ) ( ) ∂ ( ))t u t u t u t u t, , , .t t1 1 2 2

For further convenience, (5) may be rewritten as a system with
a symmetric nonlinear coupling term independent of κ. Indeed,
letting
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Fig. 1. In-plane oscillations of a double-beam sandwich system.

Fig. 2. Out-of-plane oscillations of a double-beam girder bridge.

I. Bochicchio et al. / International Journal of Non-Linear Mechanics 85 (2016) 161–173162



Download English Version:

https://daneshyari.com/en/article/787859

Download Persian Version:

https://daneshyari.com/article/787859

Daneshyari.com

https://daneshyari.com/en/article/787859
https://daneshyari.com/article/787859
https://daneshyari.com

