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a b s t r a c t

The steady-state response of an undamped Duffing oscillator to periodic external forces is studied. The
forcing functions are chosen such that the time course of the displacement can be described by exact
analytical expressions. The displacement and forcing functions are governed by Jacobi elliptic functions
and thus are periodic but generally non-harmonic. The parameter of the elliptic functions is deliberately
chosen. For certain parameter choices, exact analytical expressions are found for the frequency–ampli-
tude relation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A one-degree of freedom mechanical oscillator is considered in
which the restoring force is a composition of linear and cubic func-
tions of the displacement variable. When an external force is present
and damping is absent, the equation of motion can be written

ω κ¨ + + = ( )v v v
F
M

2 1
2 2 3

where ( )=v v t is the displacement variable, ( )=F F t is the external
force, M is the moving mass of the oscillator, and a dot denotes
derivation with respect to time, t . The system parameters, ω and κ ,
are non-negative real quantities. It is assumed that the restoring
force corresponds to a hardening spring.

Eq. (1) is a particular case of the classical Duffing equation, which
generally also contains a damping force term and in which the ex-
ternal force is usually assumed to vary harmonically with time or to be
zero. The Duffing equation has extensively been studied in the past.
Exact analytical solutions exist for Eq. (1) in the form of Jacobi elliptic
functions provided ( ) ≡F t 0 (free oscillation response) [1,2]. If damp-
ing is present or a harmonic external force is applied, only approx-
imate analytical solutions exist. The harmonic balance method [3,4]
and perturbation methods such as the Lindstedt-Poincaré [5], Krylov-
Bogoliubov [6,7], or averaging [8,9] method are used to obtain ap-
proximate periodic solutions of such equations.

In the methods mentioned above, trigonometric approxima-
tions of the actual displacement response are normally used. In
the case of strongly nonlinear oscillators, a qualitative

improvement was observed when Jacobi elliptic functions are used
instead of trigonometric functions for approximating the response
and deriving approximate analytical solutions [4–9]. This ob-
servation suggests studying the response of such oscillators to
external forces whose time course follows Jacobi elliptic functions.

This idea was formulated und used earlier [2,4,10–13]. Various
types of Jacobi elliptic forcing functions were considered in [2] and
it was shown that exact analytical solutions for the steady-state
response to such forcing can be obtained. The parameter of the
elliptic functions was left undetermined and amplitude–frequency
relations were not fully developed. The idea was applied in [12,13]
to purely cubic restoring force oscillators, which correspond to Eq.
(1) without the second term. By choosing a particular Jacobi el-
liptic forcing function, derived from the free oscillation response
and having a well-chosen parameter, an exact analytical solution
was obtained for the steady-state response that facilitates the
derivation of exact closed-form expressions for the amplitude–
frequency relation of such oscillators.

The idea of applying Jacobi elliptic forcing functions to the
study of the Duffing oscillator is revisited here. The particular case
defined by Eq. (1) is considered. Special attention is given to
choosing the parameter of the elliptic functions with regard to
finding exact analytical expressions that relate the steady-state
displacement response amplitude to the forcing frequency. In the
following, first the free undamped oscillation response of the os-
cillator is clarified. On this basis, the forced steady-state oscillation
is studied. The displacement function is chosen and a general
expression for the corresponding external force function is de-
rived. After considering various elliptic function parameter choi-
ces, preferred forms of the external force function are identified on
which the further study is based.
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2. Free undamped oscillation response

The equation governing the free oscillation response of the
oscillator under study here can be written

ω κ¨ + + = ( )v v v2 0 22 2 3

For solving Eq. (2), the trial displacement function

( )μ( ) = | ( )v t v t msn 3

is chosen, where v is the amplitude of the displacement, ( )μ |t msn
is a Jacobi elliptic function in parameter notation with the para-
meter m, and μ is a periodicity coefficient. Both μ and m are yet to
be determined. The function ( )μ |t msn appearing here corresponds
to the initial condition ( ) =v 0 0. When Eq. (3) is substituted into
Eq. (2), the validity of the trial function is confirmed and expres-
sions for μ and m are obtained:

( )μ ω κ= + ≥ ( )v 0 4
2 2

( )ω
κ

= −
+ ( )

m

v

1

1 5
2

These expressions correspond to respective expressions in [2],
where the motion is described by the Jacobi elliptic function

μ |( )t mcn that holds for the initial condition (̇ ) =v 0 0. In addition to
the system parameters ω and κ , the displacement amplitude v
appears in Eqs. (4) and (5). Hence the shape of the displacement
function (3), which is controlled by m, and the frequency of the
displacement, which is controlled by μ and m, also varies with v .
When defining the relative (dimensionless) displacement ampli-
tude

κ
ω≝ ( )V
v

6

which can also be interpreted as a nonlinearity parameter, Eqs.
(4) and (5) can be transformed into the following expressions in V :

μ ω= + ≥ ( )V1 0 72

= −
+ ( )−m

V
1

1 82

The frequency of the free oscillation response described by
Eq. (3) is

μ μ
π ε= =

( )
= ( ) ≥

( )
f

T K m
m

1
4 2

0
9

where T is the free oscillation period and ( )K m is the complete
elliptic integral of the first kind [14]. ( )K m and the ratio ε( )m
defined as

( )ε π( ) ≝
( )

= ⋅
( ) ( )

m
K

K m K m

0
2

1
10

depend on m. An explicit analytical relationship can thus be
established for the free oscillation frequency–amplitude relation,
that is, for f as a function of V or v . When substituting Eqs.
(7) and (8) into Eqs. (9) and (10) and referring to the free oscil-
lation frequency flin of the associated linear oscillator (that has
the same ω but in which κ = 0):

ω
π= ≥ ( )f

2
0 11lin

and then defining the frequency ratio β:

β ≝ ≥
( )

f
f

0
12lin

the free oscillation frequency–amplitude relation is obtained in
dimensionless form:

β π= + ⋅ −
+

≥
( )−

−⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥V K

V
1

2
1

1
0

13
2

2

1

It is apparent from Eq. (13) that β approaches 1, and f ap-
proaches flin, when V or, equivalently, v or κ , becomes small.
Conversely, when ω approaches zero, Eq. (13) reduces to

β κ
π= ± ⟺ = ± ( )

V
G

f
v
G2 14cubic cubic

in which fcubic is the free oscillation frequency of the associated
purely cubic restoring force oscillator (that has the same κ but in
which ω = 0) [15] and βcubic is its dimensionless equivalent. The
negative signs apply in case of negative V and v . The quantity G
appearing here is Gauss’s constant defined as the arithmetic-
geometric mean of 1 and 2 [16]:

( )≝ = …
( )

G
1

agm 1, 2
0.83462

15

It is useful to recall the range of some of the terms:

ω
κ≤ = ≤ ∞ ⇒ − ≤ ≤

( )
− ⎜ ⎟⎛

⎝
⎞
⎠V

v
m0 1 0

16
2

2

π π ε≤ ( ) ≤ ⇒ = … ≥ ( ) ≥ ( )G K m
G

m
2 2

1
1.1981 1 17

Note that ε( )m and ( )K m vary over a range of only about ±9%.
Hence β is closely related to μ, or the square root term in Eq.
(13), and its dependency on m, or the term related to K in Eq.
(13), is less pronounced. Nevertheless, it seems impossible to
invert relationship (13) to arrive at V as a function of β , that is, at
an analytical expression for the free oscillation amplitude–fre-
quency relation. However, this is unnecessary for plotting the
corresponding graph, as shown in Fig. 1 later in this paper.

When evaluating Jacobi elliptic functions or elliptic integrals,
some computer programs only accept parameters m for which

≤ ≤m0 1. In such a case, the terms ( )|u msn and ( )K m with <m 0, as
they appear above and in the following, can be transformed into
equivalent terms with < <m0 1 [14].

3. Forced undamped steady-state oscillation response

In linear dynamics, exponential complex functions of the type
( ) = ωF t Fei t or corresponding trigonometric functions, such as

( ) ω=F t F tsin , are normally used for representing the external
force (harmonic loading), the main reason being mathematical
advantages and not necessarily the resemblance of such functions
with actually occurring loadings. In nonlinear dynamics, the ad-
vantages of using such functions are reduced. If a harmonic load-
ing is nevertheless applied, the response of a nonlinear oscillator
will not be of the same type. If an assumption to the contrary is
made, closed-form solutions are possible, which, however, are
approximate. If such an assumption is not made, only numerical
solutions are possible.

It thus seems worthwhile to study the response of nonlinear
oscillators to different types of loading that are periodic but non-
harmonic and better fit the natural response tendency of the os-
cillator. In previous studies of the purely cubic restoring force
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