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a b s t r a c t

A non-linear identification technique based on the harmonic balance method is presented to obtain the
damping ratio and non-linear parameters of isotropic and laminated sandwich rectangular plates and
curved panels, subjected to harmonic excitation orthogonal to the surface. The response of structures
under consideration is approximated by a single-degree of freedom Duffing oscillator accounting for
viscous damping, quadratic and cubic non-linear stiffness. The method uses experimental frequency-
amplitude data and a least-squares technique to identify parameters and reconstruct frequency-response
curves by spanning the excitation frequency in the neighborhood of the lowest natural frequencies. In
particular, an iterative procedure is implemented to construct the mean displacement and identify the
damping ratio. Close agreement is seen between the reconstructed non-linear frequency-amplitude
curves, the experimental data and the results of the reduced-order model obtained in part 1 of the
present study (Alijani et al., 2015 [1]). The proposed identification technique confirms the very large
increase of damping during large-amplitude vibrations, as observed in part 1 of the present study, and
demonstrates a non-linear correlation between damping, vibration amplitude and excitation level.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In part 1 of the present study [1], a model was developed and
experiments were conducted to investigate geometrically non-linear
forced vibrations of plates and panels. In particular, five different sets
of experiments were carried out on (i) plates and curved panels made
of stainless steel having supported and free boundary conditions and
(ii) Carbon/Epoxy laminated sandwich plates with foam and honey-
comb cores. This part 2 of the present study presents an identification
procedure and the identified damping as a function of the vibration
amplitude. The identification procedure has the dual aim of
(i) tracking the evolution of damping with the vibration amplitude; (ii)
estimating the geometric non-linearities that are present in the vi-
bration response of plates and curved panels.

Non-linear system identification has received considerable re-
search attention in recent years due to the importance of obtaining
accurate numerical models that predict the response of structures
during large-amplitude vibrations. These identification techniques are
classified into several categories, including time-domain and

frequency-domainmethods. A comprehensive treatment of non-linear
system identification, in both frequency and time domain, is presented
in the monograph of Warden and Tomlinson [2]. A survey of the non-
linear system identification methods could also be found in Billings [3]
and Kreschen et al. [4]. In particular, the review article by Kreschen
et al. [4] elaborates seven different non-linear system identification
categories available to date.

The most commonly used time-domain methods are the restoring-
force surface or force-state mapping method [5,6] that uses Chebyshev
polynomials for expanding non-linear restoring forces. Other time
domain methods include those based on non-linear auto-regressive
moving average models with exogenous inputs (NARMAX) [7], Hilbert
transform [8,9] and Lie series solution [10]. Comparing to frequency
domain methods, time domain methods require less effort for data
acquisition and processing. However, they face problems in differ-
entiating noisy signals. On the other hand, frequency domain methods
avoid the problems associated with temporal data, but require more in
depth theoretical effort. Early attempts in frequency domain identifi-
cation were based on Volterra and Wiener series [2,3]. The Method of
Multiple Scales (MMS) and harmonic balance are frequently used for
performing non-linear identification in frequency domain. For in-
stance, Krauss and Nayfeh [11] used the Amplitude and Frequency-
Sweep Method (AFSM) together with MMS to perform experimental
non-linear identification on single-mode transversely excited beams.
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Malatkar and Nayfeh [12] used the peak of the non-linear frequency
response curves and MMS to estimate the modal parameters of a steel
beam subjected to base excitation considering quadratic damping. The
harmonic balance method was used by Yasuda et al. [13] in an inverse
way to perform system identification in multi-degree of freedom
lumped systems. Parametric identification of an experimental mag-
neto-elastic oscillator using harmonic balance method was carried out
by Feeny et al. [14]. Thothadrai et al. [15] and Thothadrai and Moon
[16] used harmonic balance to conduct multi-degree of freedom sys-
tem identification in experiments dealing with self-excited motions
and fluid-structure interactions.

A challenging concept in non-linear system identification is the
identification of damping from experimental data. Dissipation is in-
trinsically a non-linear phenomenon during large-amplitude vibra-
tions and it is not yet well-established. The modal damping assump-
tion is a convenient tool that has been extensively used to model
dissipation. However, it is not yet proven that this model could give an
insight of the physical reality of the damping behavior. That's why,
different non-linear damping mechanisms have been proposed with
the most common being the quadratic damping of the form ̇ ̇cx x (c
being the damping coefficient and ̇x the velocity) where the absolute
value ensures that the damping force is always opposed to the velocity
[2]. Other forms of non-linear damping include quadratic and cubic
powers of relative velocity and hysteresis. Mei and Prasad [17] used a
non-linear damping model comprising of quadratic displacement
multiplied by the velocity ( ̇cx x2 ) to investigate the damping response
of beams under acoustic loading. Mahmoodi et al. [18] proposed a
general solution based on MMS to study non-linear vibrations of
damped continuous systems. In their study, damping was assumed to
be a combination of ̇c x1

3þ ̇c x x2
2 . Recently, a similar damping model

was used by Ozcelik and Attar [19] to study the effect of non-linear
damping on the dynamics of flapping beams. The concept of the cubic
damping ( ̇cx3) has also been used by Ye et al. [20] to study the chaotic
behavior of composite rectangular plates under parametric excitation.
Non-linear damping mechanisms due to hysteresis can also be found
in Caughey and Vijayaraghavan [21] and Al-Bendar et al. [22].

Another damping model that is quite often used is the viscoelastic
model, which is based on rheological models such as the Kelvin–Voigt,
Maxwell or their generalized versions [23]. Among works that have
investigated non-linear vibrations of viscoelastic plates and panels,
one could refer to Esmailzadeh and Jalali [24], Touti and Cederbaum
[25], Billasse et al. [26] and Mahmoudkhani et al. [27]. Recently, Am-
abili [28] investigated large amplitude vibrations of Kelvin–Voigt im-
perfect plates via multi-mode Lagrangian approach.

Although there have been numerous studies concerning non-linear
damping, so far none have discussed the non-linear correlation be-
tween the damping, vibration amplitude and the excitation force level
during large-amplitude excitations. Therefore, different from previous
studies, in this paper, a non-linear identification technique based on
harmonic balance method is presented to examine the damping be-
havior of plates and panels studied experimentally in part 1 [1]. The
identification technique gives also an estimate of the strength of non-
linearity by identifying the non-linear parameters assuming that the
response of the system is approximated by a single Duffing oscillator
with viscous damping, quadratic and cubic non-linearities. Here it
should be noted that, even though viscous damping has been con-
sidered to model the damping behavior, this model could indeed give
a general perspective of how damping varies non-linearly with the
vibration amplitude since the damping ratio is estimated at each
single excitation level. The identifications are performed on: (i) a
stainless steel rectangular plate with four free edges; (ii) a sandwich
rectangular plate with Carbon/Epoxy skins having (0/90) stacking se-
quence and a DIABs Divinycell foam core with free edges; (iii) a
second sandwich plate with Carbon/Epoxy skins having (0/90) lay-up
and a PLASCOREs PN2 aramid fiber honeycomb paper core with free
edges; (iv) a stainless steel rectangular plate with supported edges;

(v) a circular cylindrical stainless steel panel with simply supported
boundary conditions. The frequency-amplitude data obtained from
experiments are used as the inputs for the identification scheme and
the least squares method is utilized to minimize the error between the
measured response and the identified model. Moreover, an iterative
algorithm is implemented to extract the mean displacement (DC
component) from the experimental data and obtain the damping ratio
with accuracy. It is observed that damping grows non-linearly with
the increase in the vibration amplitude. Furthermore, the extracted
non-linear parameters show that the experimentally tested plates and
panels are weakly non-linear systems. Finally, comparisons are per-
formed between the identified curves, the experimental data and the
reduced-order models developed in part 1 of the present study [1]
showing very good agreements. Therefore a double damping identi-
fication is performed at each excitation level, based on the single
Duffing equation proposed here and the full non-linear plate/panel
model proposed in [1], and results are compared.

2. Non-linear identification method

2.1. Harmonic balance method

A classical example of a non-linear system, originally studied by
Duffing, is the forced mass–spring system with viscous damping,
where the restoring force of the spring is non-linear (see Fig. 1).
The equation of motion for this system is:

Ω¨ + ̇ + + + = ( ) ( )mx cx k x k x k x f tcos , 11 2
2

3
3

where m is the mass, c is the viscous damping coefficient, k1 is the
linear stiffness, k2 the quadratic stiffness, and k3 the cubic stiffness.
Moreover, x is the vibration amplitude, f is the force excitation, Ω
is the excitation frequency and t is time. This system has been
extensively used for studying non-linear vibrations of structures
subjected to external harmonic excitation around the frequency of
the fundamental mode. Eq. (1) can be effective if the fundamental
mode of vibration is not involved in an internal resonance with
other modes. If such condition retains, then other modes acci-
dentally excited, will decay with time to zero due to the presence
of damping [29]. In this paper, it is assumed that this condition is
preserved and therefore the response of the plates and panels
studied in part 1 [1] are described by a single Duffing oscillator for
performing non-linear identification.

By assuming that the plate/panel has thickness h, one could
make Eq. (1) dimensionless as follows:

Fig. 1. The single-degree-of-freedom model.
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