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We study theoretically and experimentally the synchronization phenomenon of two rotating parametric
pendulums attached to common elastic support under harmonic excitation. Two types of synchronous
states have been identified - complete and phase synchronization. The interactions in the system have
been investigated numerically and experimentally. The relation between the synchronization mode and
the stability of the rotational motion for a system with flexible support has been studied. It has been
demonstrated that the synchronization of pendulums rotating in antiphase is more beneficial from
energy harvesting viewpoint than the synchronization in phase. Finally, an influence of the parameter
mismatch between the pendulums on their synchronization has been examined.
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1. Introduction

The objective of this paper is to study the synchronization of
rotational motion in the system of two parametric pendulums
subjected to common harmonic excitation. The study has been
motivated by a possibility of applying such a system for energy
harvesting, as the oscillatory motion can be converted into rotation
of pendulums. Consequently, the energy can be harvested from the
rotational motion, which is a strongly advantageous alternative to
using the energy of oscillations. The challenge of the design of such a
structure lies in balancing it properly to guarantee dynamic stability
once the pendulum is in motion. Therefore, to compensate for the
effect which a single rotating mass exerts on the support, the system
consisting of two pendulums is being considered. To achieve the
desired balance of forces the pendulums would be required to
counter rotate in a synchronized manner. If their responses are
synchronized in antiphase the structure remains stable. This section
provides an overview of the basics of synchronization theory,
reviews the main recent works on the dynamics of parametric
pendulum and looks at synchronization in pendulum systems.

1.1. Synchronization theory

The term ‘synchronous’ originates in Greek and denotes some-
thing ‘sharing the same time’. The discovery of the synchronization
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phenomena is directly related to the dynamics of the pendulum. It
has been first observed and described in the 17th century by a Dutch
researcher, Huygens, on an example of pendulum clocks hanging on
the same wall [13]. Recently his experiment has been repeated in
Kapitaniak et al. [14]. Huygens observation revealed that the clocks
were exactly synchronized, swinging in opposite directions. Even if
any disturbance occurred, they were still returning to the synchro-
nized state after some transient time. The reason for this behaviour
has been identified in the coupling effect of the beam supporting the
clocks, transmitting the vibrations.

Since then synchronization has been detected in various
systems and described in many publications. Pikovsky et al. [21]
and Blekhman et al. [4] give examples of this phenomenon in
mechanical, electrical or biological systems. In the most general
sense, occurrence of synchronization between two systems
implies existence of some relationship between their responses,
without specifying exactly the type of this relation, which can be
of a complex nature. Therefore, sometimes synchronization is
difficult to detect, as it cannot always be associated with the
identity of trajectories. Depending on the relation between the
responses, several types of synchronization have been classified.
Considering two systems, where x(t) and y(t) denote their trajec-
tories, the following types of synchronization can be distinguished
[5]: Complete synchronization [CS] is a state at which both phases
and amplitudes of the oscillating systems coincide. It can be
achieved only in case of identical oscillators when some kind of
internal or external coupling between them is introduced. The
definition of the CS concept has been introduced by Pecora and
Carroll [19] and is said to be a state in which phase trajectories x(t)
and y(t) of the coupled systems converge to the same value and
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remain in this relation during the further time evolution. The
above concept can be described by the following relation:

lim [x(t)—y(©)| =0, M

In practice very often the identity conditions are not fully met. If
there is a difference in parameters or noise is present the imperfect
complete synchronization [ICS] occurs and the synchronizability
condition becomes

f“f?o [x®O—y®)| <e, (2)

where € is a small parameter. Phase synchronization [PS] describes
a weaker degree of synchronization. The required coupling
between the systems is much lower than in case of CS so that
the identity condition is not necessary. It occurs when the phases
of oscillations are locked within a certain range. Generally speak-
ing, this correlation does not imply any relation between the
amplitudes. The mathematical condition for PS is given by

[nD1(t)—md, ()| <c, 3)

where &, and @, denote phases of the coupled oscillators n, m
integers determining the locking ratio and c is a constant. As a
consequence, the frequencies of both systems w; and @, need to
be locked as well and satisfy the relation

nwi—mwy = 0, (4)

Based on the type of the system in which synchronization is
observed, another classification can be introduced. The first case,
based on classical understanding of synchronization, is the syn-
chronization of coupled periodic oscillators. The rhythms of self-
sustained periodic oscillators adjust due to their weak interaction,
where this adjustment can be described in terms of phase locking
and frequency entrainment. The basic model of such coupled
system consisting of two oscillators is given by

dX]

dr =f1(x1)+€p;(x1,X2),
d
§=fz(><z)+epz(><z,xl), (5)

where € is the coupling parameter. If ¢ vanishes the subsystems
become independent and oscillate with their natural frequency. The
second type of interaction considered here is the synchronization of
periodic oscillators by external force. It can be also observed when
a periodic force (or noise) is applied to a group of non-coupled
autonomous oscillators. Its occurrence depends not only on the
magnitude of forcing but also on the difference between the natural
frequency of the system and the forcing one, called detuning
parameter. Inside the synchronization region, the system oscillates

with the frequency of the external force, while outside quasiper-
iodic motion can be observed.

Synchronization can also be observed in a noisy system. For such
a system the condition for synchronization needs to be modified,
for a less rigorous one. The perfect frequency entrainment is not
observed any more. A state where frequencies nearly adjust, but still
phase slips can be observed, is defined as imperfect phase synchro-
nization (IPS). Finally, synchronization can be observed also for
chaotic systems [25,15,6,20,26,23]. Its detection however depends
on the type of attractor and can be more complex.

1.2. Parametric pendulum

The parametric pendulum is a system which has been of great
interest for years, because of its rich dynamical behaviour [7,3,28,9].
It is a model with numerous engineering applications, including
marine structures, superconductor Josephson junction. Many oscil-
lating systems contain pendulum like non-linearity. Therefore,
parametric pendulum has been one of the most common systems
in the literature illustrating the dynamics of a non-linear oscillator.
Among its various responses equilibrium points, oscillations, rota-
tions as well as chaos can be observed.

The physical model of a parametric pendulum and the phase
plane representation of the basic responses for unforced undamped
system are shown in Fig. 1. The vertical oscillation of the pivot point
results in the oscillations or rotations of the pendulum, depending
on the initial conditions and forcing parameters. The closed loops
marked by 1 and 2 correspond to the oscillations around hanging
down position. Once the sufficient amount of energy is supplied the
pendulum can escape from the potential well passing the critical
case described by separatix (curve 3) and enter rotational motion
regime (curves 4).

For many engineering applications, oscillatory responses are of
main interest. Rotation of pendulum like systems has been studied
before in relation to rotor dynamics and in recent years the research
intensified due to potential applications in energy harvesting.

Approximating the escape zone has been the topic of study for
Trueba et al. [32], Thompson [31], Bishop and Clifford [9] who used
symbolic dynamics approach in their work. Different types of rota-
tions have been classified in [8]. Xu and Wiercigroch [34] derived an
analytical solution for rotational motion using multiple scales method
where Sofroniou and Bishop [28] applied the harmonic balance
method to the problem. Limit of rotational motion existence has
been determined analytically by Koch and Leven [16] and Lenci et al.
[17], who gave analytical approximation of the rotational solutions
including study of their stability.

Fig. 1. (a) Physical model of parametrically excited pendulum and (b) phase plane showing different responses of the unperturbed pendulum in terms of pendulum

displacement and velocity [35].
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