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a b s t r a c t

This paper deals with equilibrium problems in non-linear dissipative inelasticity of damaged mem-
branes. The inelastic constitutive law is obtained by modifying the classical constitutive law for a
hyperelastic isotropic material through a proper damage function, which allows to measure the effective
stress and the dissipated energy. After making the constitutive modeling, the boundary-value problem is
formulated for a damaged membrane subjected to biaxial loadings. The purpose of the analysis is to
understand how behaves a membrane that, during the deformation process, experiences a progressively
increasing damage. Equilibrium multiple branches of symmetric and asymmetric solutions, together to
bifurcation points, are computed and it is shown how damage can alter these equilibrium paths with
respect to the virgin undamaged case. In particular, the stress reductions caused by damage can give rise
to transitions of the constitutive behavior from hardening type to the softening one. These changes can
considerably affect the quality of the equilibrium solutions. Accordingly, the analysis is completed by
assessing the stability of the solutions. For this aim, the stability analysis based on the energetic criterion
is extended to damaged membranes.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The non-linear behavior of the membranes has long been
investigated. In one of its pioneering experiments, Treolar [1]
stretched a square rubber membrane by means of uniformly
distributed tensile forces acting on the four edges and having equal
magnitude, observing the following somewhat surprising result: in
some cases of high loading, the above doubly symmetric system of
external forces may give rise to asymmetric stable deformations.
Namely, the membrane may lose the square shape assuming the
stable form of a parallelogram, characterized by two unequal
principal stretches. In extreme cases, the difference between the
two stretches approached 15%. Treolar [2] reported this symmetry-
breaking phenomenon through experimental data, but without
commenting on it in any way. For a critical interpretation of the
experimental results of Treolar see the work of Batra et al. [3].

Intrinsic non-linearities of the equilibrium problem can there-
fore cause, even in a completely symmetric layout, an unexpected
lack of symmetry on the deformation. From a theoretical point of
view, the problem of the existence of asymmetric equilibrium
solutions generated by symmetric loads has received attention
only after a period of about 35 years. Kearsley [4], using the
non-linear elasticity theory, analyzed membranes composed of
incompressible Mooney–Rivlin material, finding both symmetric

and asymmetric solutions. MacSithigh [5] studied the same
problem using a minimum energy approach. For a general form
of the incompressible stored energy function, Ogden [6] carried
out a bifurcation analysis evaluating critical values of the tension
at which bifurcation occurs and showing the nature of the
deformation in the neighbourhood of these singularities. Another
contribution to bifurcation analysis was provided by Haughton [7].
More recently, considering different choices of the stored energy
function, explicit expressions for evaluating critical loads, bifurca-
tion points and the global development of asymmetric solutions
have been derived by Tarantino [8,9]. On the existence of asym-
metric deformations due to symmetric boundary conditions it can
also be seen the work of Fosdick and Royer-Carfagni [10].

In the last decades there has been, however, the emergence of
more sophisticated theories which incorporate inelastic effects (see,
e.g., [11–13]), exemplified by hysteresis, residual strain, thermal and
viscoelastic effects, Mullin effects, frequency-dependent response
and damage. All this is motivated by the need to more accurately
model the material response of advanced rubber products in
engineering applications, which often exhibit distinctly an inelastic
behavior. This work is devoted to the analysis of damaged hyper-
elastic membranes in an isothermal and rate-independent context.
We will confine ourselves to transformations slow enough so that
the produced heat is transferred out to keep temperature variations
unimportant. Likewise, the term rate-independent means that we
are interested to phenomena with a time scale so slow that all rate
effects (not only inertia) are neglected.

In the context of infinitesimal theory, the damage mechanics
was introduced, about fifty years ago, by Kachanov [14] and then
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developed by Chaboche [15,16], Lemaitre [17–19] and Krajcinovic
[20]. Damage mechanics was successfully applied to different
classes of materials such as metals, composites and concretes
(see, e.g., Voyiadjis et al. [21]). Concerning damaged rubber-like
materials, it can be observed what follows. Mostly performing
simple extension experiments, failure properties of natural rub-
bers have been investigated by Flory et al. [22] and by Smith
[23,24]. At that time, several molecular theories of ultimate
behavior of rubbers have also been developed and compared
favorably with experiments [25,26]. However, these molecular
models could not describe the accumulation of microscopic
defects in the material. Thus, in the following years, many versions
of damage approach with small elastic strain have been proposed
and tested [27,28].

A more advanced and comprehensive approach, which includes
large strains with and without damage, may be found in [11–13],
where a new field theory for structured deformations, examining
the effects of multiscale geometry accounting for the occurrence of
disarrangements, has been introduced and examined. While the
kinematics has been worked out in [29,30], dissipative and non-
dissipative effects at submacroscopic levels, which include
damage, have been examined in the three papers cited above.

Originally, damage mechanics was based on the definition of
effective stress. Such a definition is motivated by the fact that,
under loading, the material surface, on which internal forces apply,
is decreasing because of the emergence of microdefects or micro-
voids.1 These physical considerations are recalled in the next
section, where the constitutive law for a damaged hyperelastic
isotropic and compressible material is written in terms of Piola–
Kirchhoff stress tensor, extending the effective stress concept and
the hypothesis of strain equivalence [31]. In Section 3, the
equilibrium problem of a membrane, experiencing a level of
damage that increases gradually as enhances its deformation, is
formulated. In detail, by varying the ultimate threshold of damage,
it is investigated how damage may alter the equilibrium paths2 of
a virgin undamaged membrane. Then, formulated the boundary-
value problem, the expressions governing the (symmetric and
asymmetric) solutions, together to the conditions of occurrence of
bifurcation, are derived. The study is completed in Section 4 where
a stability analysis is proposed. For this purpose, the energy
criterion, which states that a deformation is locally stable if it
renders the total potential energy a minimum, is extended to the
case of damaged membranes. In particular, four inequalities which,
if fulfilled, ensure the stability of the solutions under each type of
small perturbation, are obtained. Emphasis is placed to show how
the damage may cause the loss of convexity of the total potential
energy. In Section 5, considering the class of compressible
Mooney–Rivlin materials, a numerical analysis is performed. The
equilibrium branches, qualitatively more interesting, are shown by
some diagrams and their stability is assessed.

2. Recalls on the damage theory

Let there be given a non-empty connected and bounded
domain B of the three-dimensional Euclidean space E, whose
boundary ∂B is Lipschitz-continuous. We identify the closure of
such domain, B , as the body. The undeformed configuration B of
the body is assumed as the reference configuration, whereas the

deformed configuration is given by the deformation φ : B-V,
that is a smooth enough, injective and orientation-preserving (in
the sense that det F40Þ vector field. Hereinafter F¼Gradφ
denotes the deformation gradient and V the vector space asso-
ciated with E.3

After these initial positions, we move on to describe the
damage effects. Damage of materials is characterized by the
progressive change in the microscopic internal structure of mate-
rials, which in turn leads to the deterioration of the mechanical
properties. These material changes include the nucleation and
growth of spatially distributed microcracks or microvoids under
various loading conditions,4 together with the mechanism of their
coalescence to macrocracks or macrovoids.5 Physically, when
compared to the response of the virgin undamaged material, the
existence of these microdefects results, on the one hand, in an
increase of the stress level in the remaining effective material and,
on the other hand, in a decrease of the stored energy function. An
attractive theory is offered by continuum damage mechanics (CDM),
which employs internal fields or rather damage variables for
modeling, in an averaged sense, the local distribution of micro-
defects [20]. In the sequel, a restriction is made to isotropic
damage states, assuming that microdefects have the orientation
distributed uniformly in all directions. For isotropic damage states,
a scalar damage variable usually produces satisfactory results
(Davison et al. [42], Chaboche [43], Billardon and Moret-Bailly
[44]). This scalar variable is denoted by d (d¼ d0Z0 corresponds
to the initial state and d¼ dcr1 to the final state. In particular,
dc ¼ 1 represents the complete local rupture).

The effective Cauchy stress tensor Teff , which acts on the
damaged material, can be related to the usual Cauchy stress tensor
T through the following expression (Chaboche [43], Murakami
[45], Lemaitre and Chaboche [31]):

Teff ¼
T

1�d
: ð1Þ

This relation is commonly applied with the hypothesis of strain
equivalence [31]. Such an assumption states that the deformation
behavior of a damaged material is expressed by the same con-
stitutive law of the virgin undamaged material, in which the usual
stress is replaced by the effective stress. Given the assumption of
the strain equivalence, the deformation is affected by damage only
in the form of the effective stress. This allows to write the effective
Piola–Kirchhoff stress tensor TReff in a form similar to (1)

TReff ¼
TR

1�d
: ð2Þ

With the previous assumptions, the stored energy function w
can be considered as the product of the reducing factor ð1�dÞ by
the stored energy function of the virgin material, denoted by w0:

wðF; dÞ ¼ ð1�dÞw0ðFÞ: ð3Þ
From (3) the (nominal) Piola–Kirchhoff stress tensor is obtained:

TR ¼ ð1�dÞ∂w0

∂F
: ð4Þ

In the present purely mechanical setting, the thermodynamic
framework makes use of two basic constitutive functions:

1 Taking into account that the damage is modeled with the formation of a
volume fraction of microvoids, the assumption of incompressibility may not be
fully justified, although it may simplify the analysis.

2 These paths are intended as the continuous sequence of equilibrium config-
urations that the body assumes, under the strain-control condition, by varying the
external loads with continuity.

3 In this paper, vector and vector-valued functions are represented by boldface
minuscule letters, tensor and tensor-valued functions by majuscule letters. Differ-
entiation with respect to time is denoted by a superimposed dot.

4 A wide variety of (micro or macro) disarrangements are accounted for in
[11–13].

5 In non-linear elasticity, deformation and stress singular fields near the apex
of macrocracks have been analyzed, for example, in [32–36] under static condi-
tions, whereas the dynamical propagation of macrocracks has been studied in
[37–39]. Also note that recently in fracture mechanics there has been a growing
interest in the variational approach to these problems (see, e.g., [40,41]).
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