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a b s t r a c t

Using a variant of a spectral collocation method we numerically solve the problem of the motion of a
highly viscous fluid with pressure dependent viscosity under a surface load, which is a problem relevant
in many applications, in particular in geophysics and polymer melts processing. We compare the results
with the results obtained by the classical Navier–Stokes fluid (constant viscosity). It turns out that for a
realistic parameter values the two models give substantially different predictions concerning the motion
of the free surface and the velocity and the pressure fields beneath the free surface.

As a byproduct of the effort to test the numerical scheme we obtain an analytical solution—for the
classical Navier–Stokes fluid—of the surface load problem in a layer of finite depth.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The fact that the material properties of fluids can depend on the
pressure is known for a long time, see for example the well known
pioneering experiments by Bridgman [1,2]. In many cases it is
reasonable to model certain fluids as incompressible viscous or
viscoelastic fluids with pressure dependent material moduli, see
for example Bair et al. [3], Laun [4], Rajagopal and Szeri [5], Sedláček
et al. [6], Sahaphol and Miura [7], Hausnerová et al. [8], Martínez-
Boza et al. [9] and Kannan and Rajagopal [10] for applications
ranging from polymer melts, lubricants and fuel oils to geomaterials.

A simple and frequently used mathematical model for some of
these fluid type materials is the following generalisation of the
Navier–Stokes model:

T¼ �pIþ2μðpÞD; ð1:1aÞ
where T denotes the Cauchy stress tensor, p is the pressure,
D¼ def

1
2ð∇vþð∇vÞ> Þ is the symmetric part of the velocity gradient,

and

μðpÞ ¼ μref e
αðp�pref Þ; ð1:1bÞ

where μref is the viscosity at the reference pressure pref . Such fluid
is usually referred to as a piezoviscous fluid. Numerous papers
have been devoted to analytical solutions of simple boundary
value problems for model (1.1), see for example Denn [11], Hron
et al. [12], Vasudevaiah and Rajagopal [13], Le Roux [14], Průša [15],

Saccomandi and Vergori [16], Hron et al. [17], Kalogirou et al. [18],
Rajagopal et al. [19–21], but the studies focused on numerical
simulation of the behaviour of piezoviscous fluids in more com-
plex settings are rather rare, see for example Gwynllyw et al. [22],
Hron et al. [23], Lanzendörfer [24] or Chung and Vaidya [25].

In what follows we consider the motion of a viscous fluid with
pressure dependent viscosity, that is of a fluid described by the
constitutive relation (1.1), in a layer of a finite depth under a
surface load, see Fig. 1 for the problem setting. The problem of the
motion under a surface load appears in many applications, a
prominent one being the problem of uplift of the Earth0s crust
after the melting of an ice sheet.1 The problem has been studied—for
the classical Navier–Stokes fluid and a layer of infinite depth—in
the pioneering papers by Haskell [26,27], and although the setting
used by Haskell [26,27] provides only a very oversimplified descrip-
tion of the postglacial rebound process, it still serves, in a sense,
as a benchmark for testing the behaviour of material models in
geophysics, see for example Mitrovica [28]. Interestingly, the
influence of the pressure on the viscosity is of interest also for
geomaterials, see for example Li et al. [29], which provides a
motivation for the study of the motion of the piezoviscous fluid
under a surface load.2

The paper is organised as follows. First we point out, see Section
2, two pleasing features concerning the investigation of the motion
under a surface load in the context of geophysical applications,
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1 In this case it makes sense to model the response of the Earth0s crust as the
response of a highly viscous fluid.

2 The fully realistic geophysical setting would in many cases require to take
into account also other effects such as temperature dependent viscosity and so
forth. Here we want to focus only on the effects due to the pressure dependent
viscosity, therefore we do not consider other relevant physical phenomena, and we
basically stay in the oversimplified setting introduced by Haskell [26,27].
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namely the fact that the viscosity is very high, and that the deflection
of the free surface is very small compared to the characteristic length
scale of the problem. (The same holds for some polymer melts under
a small surface load.) This means that the problem can be substan-
tially simplified, see Section 2 for details, and instead of the full
problem one can solve a simpler problem that provides a good
approximate solution to the full problem.

The simplifications discussed in Section 2 are such that the only
non-linearity that is treated in the simplified problem is the non-
linearity in the constitutive relation, which allows one—in the case
of the linear Navier–Stokes model—to solve the governing equa-
tions analytically, see Section 3. The analytical solution can be then
used for testing the core component—the Stokes type problem
solver—of the numerical scheme for the non-linear model (1.1).

In Section 4, we discuss a numerical scheme for solving the
non-linear partial differential equations arising from the use of the
constitutive relation (1.1). The scheme is based on a variant of a
spectral collocation method, see for example Peyret [30] or Canuto
et al. [31,32], which is a powerful method for solving partial
differential equations in simple domains. Finally, in Section 5 we
compare the results obtained by the classical Navier–Stokes fluid
model and model (1.1). It turns out that the results are, for a
realistic set of material parameters, significantly different.

2. Problem description

2.1. Full system of governing equations

Let us now discuss in detail the problem setting, see Fig. 1.
Concerning the assumptions and simplifications we are going to
make we closely follow Haskell [26,27]. The only departure from
the original geometrical setting is the fact that we consider the
motion under a surface load in a layer of a finite depth h. This is
more realistic and in fact is necessary if we want to investigate the
behaviour of the model (1.1), since in the layer of the infinite depth
one would get infinite pressure and hence the viscosity in (1.1).

The problem of surface load is for simplicity studied as a two
dimensional problem, there is no motion in the eŷ direction and all
variables (velocity, pressure) are assumed to be independent of y
coordinate. (This is essentially tantamount to the claim that we are
solving the problem for a load of infinite, meaning very large,
extent in the eŷ direction.) The horizontal axis z¼0 coincides with
the surface of the unloaded layer, and the deflection of the free
surface is described by the function ζðx; tÞ. The load sðx; tÞ is
assumed to be symmetric with respect to x¼0 axis, and the fluid is
placed in the homogeneous gravitational field b¼ geẑ .

The full system of governing equations for the motion of a
homogeneous incompressible fluid in the domain ΩðtÞ ¼ fxAR2∣z
Aðζðx; tÞ;hÞg reads, under the assumption of the absence of

internal couples:

ρ
dv
dt

¼ div Tþρb; ð2:1aÞ

div v¼ 0; ð2:1bÞ
where v denotes the velocity and ρ denotes the density. Symbol T
denotes the Cauchy stress tensor which in the case of incompres-
sible Navier–Stokes fluid and the piezoviscous fluid reads

T¼ �pIþ2μD ð2:2Þ
where μ¼ μref or μ¼ μref e

αðp�pref Þ respectively.
The boundary conditions on the bottom are the no-slip boundary

and no-penetration boundary conditions:

vjz ¼ h ¼ 0; ð2:3Þ
and a traction type boundary condition on the free surface,

Tnjz ¼ ζðx;tÞ ¼ �sn; ð2:4Þ

where n denotes the unit outward normal to the surface z¼ ζðx; tÞ.
Finally, the velocity and the stress fields are required to vanish for
x-71.

One should be aware of the fact that the boundary condition
(2.4) is only an approximation of a fully realistic setting, since this
boundary condition implies that there is no interaction (such as
friction) between the load and the underlying fluid, that is
t�Tnjz ¼ ζðx;tÞ ¼ 0, where t is the tangent to the surface z¼ ζðx; tÞ.
Further, (2.4) also implies that the load always acts in the direction
of the instantaneous normal to the (moving) free surface z¼ ζðx; tÞ
which is not necessarily true.

2.2. Simplified system of governing equations

Following Haskell [26,27] we will treat the problem in a quasi-
static approximation, that is the left-hand side of (2.1a) is
completely neglected, and the system reduces to

0¼ �∇ ~pþdivð2μDÞ; ð2:5aÞ

div v¼ 0; ð2:5bÞ
where we have introduced the notation

~p ¼ defp�ρgz: ð2:6Þ
The introduction of the modified pressure ~p will lead, in the case
of the Navier–Stokes fluid, to the elimination of the absolute term
ρb in (2.1a) and to the possibility of solving the linear homo-
geneous system (2.5a) for ~p and v analytically, see Section 3 for
details.

Concerning the boundary condition (2.4) we assume, following
the seminal paper by Haskell [26,27], that the deflection of the free
surface is small, and consequently (2.4) can be replaced by

Tjz ¼ 0eẑ �ρgzjz ¼ ζðx;tÞeẑ ¼ �seẑ ð2:7Þ

The deflection of the free surface is therefore reflected only by the
presence of the hydrostatic contribution to the spherical part
of the Cauchy stress tensor and it is neglected elsewhere.
(See Haskell [26,27] for details.) This approximation is the stan-
dard approximation in investigation of water waves, see for
example the classical monograph by Lamb [33]. The simplified
version of the boundary condition (2.4) therefore reads

~pðx;0; tÞþρgζðx; tÞ�2μðpÞ∂vz
∂z

ðx;0; tÞ ¼sðx; tÞ; ð2:8aÞ

∂vx
∂z

ðx;0; tÞþ∂vz
∂x

ðx;0; tÞ ¼ 0: ð2:8bÞ

Fig. 1. Problem geometry.
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