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a b s t r a c t

An arch under a suddenly-applied load will oscillate about its equilibrium position. If the suddenly-
applied load is sufficiently large, the oscillation may reach a position on the unstable equilibrium branch
of the arch, triggering its dynamic buckling. In many cases, arches are supported by other structural
members or by elastic foundations which provide elastic types of rotational restraints to the ends of the
arch. When the rotational end restraints of an arch are not equal to each other, the in-plane non-linear
equilibrium path of the arch may have multiple unstable branches, which will influence the dynamic
buckling of the arch significantly. This paper investigates effects of multiple unstable equilibrium
branches on the non-linear in-plane dynamic buckling of a shallow circular arch under a suddenly-
applied central concentrated load. Two methods based on the energy approach are used to derive the
dynamic buckling loads. It is found that the number and magnitude of dynamic buckling loads are
influenced significantly by the number of unstable equilibrium branches, by the stiffness of the unequal
rotational end restraints, and by the included angle and slenderness ratio of the arch.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that if a shallow arch is subjected to a suddenly-
applied load, the load will induce oscillation of the arch. When the
load is sufficiently large, the arch may oscillate to its unstable
equilibrium branch, triggering dynamic buckling of the arch. In
practice, an arch may be supported by elastic foundations or by
other structural members that provide elastic rotational restraints
to its ends (Fig. 1). These rotational end restraints participate in the
dynamic responses of the arch to the external dynamic loads and
may influence its dynamic buckling behavior. It is known that
when the stiffness of the end restraints is equal to each other, the
non-linear equilibrium path of the arch under symmetric loading
has a post-limit point unstable equilibrium branch or a post-
bifurcation unstable branch [1,2]. In some cases, the configurations
of the supporting structural members at both ends of an arch are
not necessarily the same and so the rotational end restraints of the
arch have unequal values of stiffness [3,4]. Arches with unequal
rotational restraints under a uniform radial load only have one
post-limit point unstable equilibrium branch [3]. However, when
these arches are subjected to a central concentrated load, they
have quite complicated non-linear equilibrium paths [4]. Owing to
the influence of the rotational end restraints, the non-linear

equilibrium path of an arch under a central concentrated load
may have one, two or three post-limit point unstable equilibrium
branches, and may even have looping postbuckling behavior [4].
In addition, the distance between the primary stable equilibrium
branch and the unstable equilibrium branches is also influenced
by the rotational end restraints significantly [4]. Such multiple
postbuckling response problems of non-linear structures can also
be solved by the generalized displacement control method as
shown by Yang and Shieh [5].

Because dynamic buckling of an arch occurs when the oscilla-
tion caused by the suddenly-applied load reaches one of the
unstable equilibrium branches [6,7], the number of unstable
equilibrium branches and the distance between the primary stable
and unstable branches are anticipated to play important parts in
the non-linear dynamic buckling behavior of the arch. However, it
is not known how to determine the dynamic buckling loads when
an arch has the multiple unstable equilibrium branches and how
the multiple unstable branches and unequal rotational end
restraints influence the dynamic buckling of the arch. Hence,
investigation is needed to solve these problems.

Under general loading, numerical and/or semi-analytical
approaches are usually used to solve the differential equations of
motion to determine the dynamic buckling load of structures
[8–16]. However, when a structure such as a shallow arch whose
non-linear equilibrium path has at least one unstable equilibrium
branch is subjected to a suddenly-applied load, it is possible to use
analytical approaches for its dynamic buckling analysis. Simitses
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[6] has shown that energy approaches can be used for dynamic
buckling analyses of such structures under suddenly-applied
loads, while Kounadis and his co-authors [17–24] have performed
a number of excellent investigations and established criteria of
non-linear dynamic buckling of various autonomous structural
systems based on the energy-geometric approaches. The major
merit of these energy approaches is that they are devoted to
finding the criterion which allows the dynamic buckling load to be
determined analytically without actually having to solve the
differential equations of motion.

Energy approaches have also been used for the dynamic
buckling analysis of shallow arches by several researchers.
Simitses [6] derived approximate solutions for the lower and
upper dynamic buckling loads for pin-ended and fixed shallow
sinusoidal arches under suddenly-applied sine-wave loading.
Levitas et al. [27] adopted Poincaré-like simple cell mapping to
present a study of the global dynamic stability of a simply-
supported shallow arch with a rectangular cross-section subjected
to uniform constant lateral loading. Pi and Bradford [7,28,29]
applied the energy approach to the dynamic buckling of pin-
ended and fixed arches and obtained the analytical solutions for
the dynamic buckling loads.

The energy approach is, therefore, used in this paper to study
the effects of the multiple unstable equilibrium branches and
unequal rotational end restraints on the dynamic buckling beha-
vior of shallow pin-ended circular arches under a suddenly-
applied central concentrated load of infinite duration (Fig. 1) and
to use two complementary methods to derive the analytical
solutions for the dynamic buckling loads of these arches.

2. Differential equations of motion

The rotational end restraints can be replaced by equivalent
elastic rotational springs and the arch can be considered to be
supported elastically at the ends by these rotational springs as
shown in Fig. 1. Before dealing with the dynamic buckling
behavior of a dissipative shallow arch, it is desirable to study the
dynamic buckling behavior of its idealized undamped counterpart.
Hence, the derivation of the differential equations of motion is
based on the following assumptions: (1) The deformation of the
arch satisfies the Euler–Bernoulli hypothesis, (2) the arch has a
uniform cross-section, (3) the arch is slender, i.e. the dimensions of
the cross-section are much smaller than the length and radius of
the arch, (4) the lateral and torsional deformations of the arch are
fully prevented, and (5) the arch is undamped. The solutions for
the dynamic buckling of undamped arches provide a sound basis
for investigating dynamic buckling of arches with small damping,
which can be dealt with by using the energy method in association
with a perturbation approach as shown in [6].

Based on these assumptions, the Lagrangian L of the
undamped arch and load system can be expressed as

L¼ T �U ; ð1Þ
where T is the kinetic energy given by

T ¼mA
2
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where _ðÞ ¼ ∂ðÞ=∂t, t is the time, ~v ¼ v=R, ~w ¼w=R, v and w are the
radial and axial displacements, m is the mass density of the
material, and U is the total potential energy of the arch and load
system given by
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in which kiði¼ 7ΘÞ is the stiffness of the rotational end restraints,
E is Young0s modulus, A is the area of the cross-section, Ix is the
second moment of area of the cross-section about its major
principal axis, εm is the membrane strain given by [6,17,25,27]

εm ¼ ~w 0 � ~vþ ~v 02

2
; ð4Þ

where ðÞ0 � ∂ðÞ=∂θ, and DiracðθÞ is the Dirac-delta function defined
by

DiracðθÞ ¼ þ1; θ¼ 0
0; θa0

(
and

Z 1

�1
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and it has the propertyZ 1

�1
DiracðθÞf ðθÞ dθ¼ f ð0Þ: ð6Þ

The differential equations of motion can be derived from the
Lagrangian L given by Eq. (3) using the Hamilton0s principle,
which can be stated asZ t2

t1
δL dt ¼

Z t2

t1
δðT �U Þ dt ¼ 0 with δ ~v ¼ 0;

δ ~w ¼ 0 at t ¼ t1; t2 for �ΘrθrΘ ð7Þ
where t1 and t2 are arbitrary times.

Substituting Eqs. (2)–(4) into Eq. (7) and integrating it by parts
leads to the differential equations of motion

ðNRÞ0 þmAR3 €~w ¼ 0 ð8Þ
in the axial direction, and

�EIx ~v
iv

R
�ðNR ~v 0Þ0 �NRþDiracðθÞQR�mAR3 €~v ¼ 0 ð9Þ

in the radial direction; and leads to the static boundary conditions
as

2Θαi ~v
″
i 7 ~v 0

i ¼ 0 with i¼ 7Θ ð10Þ
where N is the axial compressive force and αi is the relative
flexibility of the elastic rotational end restraints defined by

αi ¼
EIx
kiS

with i¼ 7Θ ð11Þ

with S being the length of the arch.
In addition, the essential kinematic boundary conditions are

~v ¼ 0 and ~w ¼ 0 at θ¼ 7Θ: ð12Þ
When the arch is assumed to be at rest before the application of

the sudden central concentrated radial load, the initial conditions
are

~v ¼ ~w ¼ 0 and _~v ¼ _~w ¼ 0 at t ¼ 0: ð13Þ

arch having unequal end rotational restraints sudden load of infinite duration

Fig. 1. Circular arch having rotational end restraints and suddenly-applied load.
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