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a b s t r a c t

We calculate the rate coefficient as a function of temperature for lattice diffusion of hydrogen and its
isotopes in a-iron; and also for trapping and escape from a vacancy. We employ Monte-Carlo and mo-
lecular dynamics methods based around the Feynman path integral formulation of the quantum partition
function. We find large quantum effects including tunnelling at low temperature and recrossing at high
temperature due to the finite extent of the particle probability density. In particular these serve to in-
crease the rate of trapping and to decrease the rate of escape at low temperature. Our results also show
very clear non classical isotope effects.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the largest known diffusivities in the solid state is that of
hydrogen in a-iron [1,2]. There are two reasons for this. One lies in
the geometry of the body centered cubic lattice and its tetrahedral
interstices; the other arises from the small mass of the proton
leading to strong quantum effects, including large zero point en-
ergies and tunnelling [3]. It is typical that a rate coefficient may
show Arrhenius behaviour at high temperature, T, and be essen-
tially independent or weakly dependent on T otherwise [4] (see
Fig. 4). A further complication arises in a-iron in that the transport
of H is much attenuated by trapping of protons by crystal defects:
dislocations, grain boundaries and vacancies, among others [5].
Hence the measurement of the lattice diffusivity presents many
technical challenges [1] so that onewould like to be able to separate
out the effects of lattice diffusion and trapping by suitable theo-
retical calculations. We are concerned with the traps' capture
probabilities [6]. In addition we are keenly interested in the mean
residence time, t, of a proton trapped at a defect [6]; this is the in-
verse of the associated rate coefficient for jumping out of the trap.
In addressing these matters we arrive at some rather startling
conclusions concerning the roles of tunnelling through the barrier
and recrossing at the saddle point in the potential energy surface.

We find that an interesting qualitative interpretation can be made
from the behaviour of the “beads” in the path integral “necklace” in
Feynman's picture.

The most severe approximation that we make is to assume that
the hydrogen atom moves in a static lattice of iron atoms. This
means that we cannot admit phonon assisted tunnelling [7].
However it allows us towork with a potential energy surface which
provides a single degree of freedom in the classical transition state
theory [4,8]. We do allow relaxation of the iron atoms, albeit in a
rather stilted form: when the proton is in a reactant or product
state (before or after a hop) it sees a lattice of iron atoms relaxed
about the proton in its metastable position.We also hold the proton
in a saddle point position and relax the iron atoms to provide an
“activated complex” state. To locate saddle points we use a “nudged
elastic band” (NEB) energy minimisation [9]. Interatomic forces
that are required for these procedures are obtained from a mag-
netic tight binding (TB) model of H in iron [10]. This is not a severe
approximation, since comparison with density functional theory
(DFT) calculations shows good agreement in both concentrated and
dilute limits [10]. In Fig. 1 we show a contour plot of the two po-
tential energy surfaces.

Having established potential energy surfaces we calculate po-
sition probability densities (PPD) and quantum partition functions
employing the Feynman path integral method [11] in a manner
described earlier [12] using WangeLandau Monte Carlo [13]. To
address trapping we consider the singly occupied vacancy as an
archetypal trap for hydrogen. This is a much studied defect and
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regarded to have particular significance for the behaviour of H in a-
iron [2,14]. The TB model has been shown to give a good account of
the atomic structure and energetics of H binding to a vacancy
compared to DFT calculations [10,15,16]. Fig. 2 shows a cartoon of
the six possible hydrogen absorption sites.

Fig. 3 shows the PPD of H trapped at an a-iron vacancy. It is very
significant that at 50 K, although the centroid of the particle (in the
language of path integral theory [17]) is constrained to remain at
the dividing surface, the PPD clearly indicates that the proton has
tunnelled through the barrier and largely escaped from the trap
(indeed the proton has “split into two”). Note also, that at high T the
proton is by no means localised and samples a considerable region
of configuration space orthogonal to the reaction path, ie, in the
region of the “dividing surface” having potential energies greater
than at the saddle point. Therefore we would expect quantum ef-
fects effectively to lower the activation barrier at low T, but to raise it
at high T.

2. Theory and results

The Feynman path integral method is a means to obtain quan-
tum partition functions. We illustrate this for a single particle
whose equation of motion is Schr€odinger's equation in a potential
energy V(x) (which becomes our potential energy surface in the
configuration space of all the atoms in our simulations). The
partition function of this particle is [11,19].

Z ¼ P
i
e�bEi ¼

Z
dx rðx; x; TÞ

¼
Z

DxðuÞ e�S=Z
(1)

Here, Ei are eigenvalues of the Schr€odinger equation, r is the one
particle density matrix, and the particle's probability density (see
Fig. 3) is r(x,x,T)/Z. Equation (1) is an integral of the action in
imaginary time
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the symbolDxðuÞ indicating that the integral in (1) is taken over
all paths in configuration space starting at time u¼ 0 and finishing
at u ¼ bZ, where b ¼ 1/kBT and kB is the Boltzmann constant. The
paths over which (1) is taken are closed in the sense that the par-
ticle starts and finishes at the same point, x, in configuration space.
The integral in (1) can be discretised for numerical purposes and
this furnishes us with the approximate formula [19].
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again over all closed paths having xiþP¼ xi, ci [17]. But this is more
than just a numerical convenience. It reveals that the partition
function of a quantum particle is identical to that of a necklace of P
classical particles, or beads, moving in a reduced potential energy
V(x)/P and connected by springs of stiffnessmP=b2Z2. Note that the
stiffness is proportional to T2 which means that at high T the
necklace tightens towards a point particle (the classical limit) while

Fig. 1. Calculated potential energy surfaces for a proton in fixed Fe lattices. In (a) the Fe atoms are relaxed about the proton when it is fixed at the bulk tetrahedral site. In (b) the Fe
atoms are at the relaxed saddle point configuration. The potential energy, V, is in electron volts. In each case the equilibrium proton position is at the origin of the coordinates.

Fig. 2. The six absorption sites of a hydrogen atom bound to a vacancy in bcc Fe. Up to
six hydrogen atoms may be absorbed exothermically from bulk tetrahedral sites. The
vacant site itself is not a trap site. Roughly, each proton is found near a tetrahedral site
on the faces bounding the vacancy; however each is displaced slightly towards the
vacancy and in some cases there are small lateral shifts. For precise locations, see
Refs. [16,10].
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