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a b s t r a c t

Void strengthening in crystalline materials refers to the increase in yield stress due to the impediment of
dislocation motion by voids. Dislocation dynamics (DD) is a modeling method well suited to capture the
physics, length scales, and time scales associated with void strengthening. However, previous DD simu-
lation of dislocation–void interactions have been unable to accurately account for the strong image forces
acting on the dislocation due to the void’s free surface. In this article, we employ a finite-element-based
DD method to determine the obstacle strength of voids, defined as the critical resolved shear stress for a
dislocation to glide past an array of voids. Our results demonstrate that the attractive image forces
between the dislocation and free surface significantly reduce the obstacle strength of voids. Effects of sur-
face mobility and stress concentrations around the void are also explored and are shown to have minimal
effect on the critical stress. Finally, a new model relating void size and spacing to obstacle strength is
proposed.

Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

1. Introduction

The plastic deformation of crystalline materials is primarily
governed by the evolution of dislocations. Interactions of disloca-
tions with atomic defects and microstructural features are known
to significantly affect dislocation motion, altering the macroscopic
mechanical response. Voids, frequently introduced during process-
ing, additive manufacturing, or irradiation, are one such feature
that has been found experimentally to increase yield strength with
increasing void density [1,2]. The increased yield strength is pri-
marily attributed to the pinning of dislocations at the voids [2].
Consequently, the strength of crystalline material is dependent
on the obstacle strength of the void configuration, defined as the
magnitude of stress necessary for a dislocation to bypass a void
array. Despite the fundamental importance of the above
void-strengthening in determining the material response in porous
crystals, few accurate models exist.

Several studies of the interaction of dislocations and voids have
been carried out by means of molecular dynamics (MD) [3–8].
These studies have provided tremendous insight into bypass mech-
anisms at the atomic scale, such as glide [3], climb [4], and inertial
effects [7]. However, void sizes directly accessible to MD are typi-
cally in the range of 1–6 nm, whereas corresponding void sizes

found in crystalline materials commonly range from tens of
nanometers to microns [9–13]. Furthermore, MD, due to its limita-
tions in the size of the computational domain, can frequently only
be applied to modeling a single void in a periodic array of voids.
Such an idealized arrangement of voids is unlikely to provide a sta-
tistically representative characterization of plasticity in crystals
with porosity. Finally, temporal scales characteristic to MD require
strain rates on the order of 106–109 1/s, well outside of the range
encountered in typical applications.

In contrast with MD, dislocation dynamics (DD) is a more suit-
able choice for studying yield strength and early stages of strain
hardening at larger length and time scales. DD has been shown
capable of capturing the strengthening mechanisms due to interac-
tion of dislocations with other defects [14–16]. However, modeling
of voids by means of DD has been challenging due to the need to
account for the presence of surfaces. Orowan [17] was the first to
explicitly model the interaction of dislocations with other defects,
namely impenetrable inclusions where free surfaces are not appli-
cable. Subsequently, Bacon, Kocks, and Scattergood [18] expanded
Orowan’s model to incorporate dislocation self-interactions.
According to this model, the critical resolved shear stress, sc ,
required for an edge dislocation to bypass a periodic array of
impenetrable inclusions is given by

sc ¼ lb
2pL

ln
D
b

 !
þ D

" #
ð1Þ

http://dx.doi.org/10.1016/j.actamat.2015.08.067
1359-6454/Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

⇑ Corresponding author.
E-mail address: joshua.crone.civ@mail.mil (J.C. Crone).

Acta Materialia 101 (2015) 40–47

Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier .com/locate /actamat

http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2015.08.067&domain=pdf
http://dx.doi.org/10.1016/j.actamat.2015.08.067
mailto:joshua.crone.civ@mail.mil
http://dx.doi.org/10.1016/j.actamat.2015.08.067
http://www.sciencedirect.com/science/journal/13596454
http://www.elsevier.com/locate/actamat


where l is the shear modulus, b the magnitude of the Burgers vec-

tor, D the void diameter, L the void spacing, D ¼ ðD�1 þ L�1Þ�1
, and

D ¼ 0:7. Scattergood and Bacon [19] extended this model further,
replacing impenetrable inclusions with voids. Their model yielded
the same functional form of Eq. (1), albeit with D ¼ 1:52. At present,
the model of Scattergood and Bacon is widely accepted for model-
ing of the obstacle strength of voids. However, Scattergood and
Bacon openly discuss a number of significant simplifications in their
model. First and foremost, the image forces which account for the
interaction between the dislocation and the free surface are only
accounted for at the dislocation-surface intersection point and are
neglected otherwise. Furthermore, the effect of the free surface is
approximated by means of the simplified geometry of a half-
space. In addition, the applied stress field is assumed to be uniform,
ignoring the effect of stress concentrations. Finally, mobility of the
dislocation along the void’s free surface is modified via a surface
energy term without a systematic study of its effect on sc .

Before DD can be reliably applied to study large scale void-
strengthening effects at high void and dislocation densities, it is
important to accurately model the obstacle strength of voids in
idealized geometries, such as a periodic array. Therefore, the focus
of this article is twofold. First, we re-examine the approximations
made by Scattergood and Bacon [19] and determine their effects
on sc . The development of advanced computational tools for com-
puting image forces with arbitrary geometries [20,21] enables us to
improve upon these previous predictions with more accurate treat-
ment of image forces. An understanding of the various approxima-
tions is a critical step towards performing large scale studies that
are both physically accurate and computationally tractable.
Second, using a more accurate treatment of the surface effects,
we present a new model for the obstacle strength of voids.

2. Methodology

2.1. Simulation procedure

Modeling of dislocation dynamics (DD) with surface effects is
performed by coupling a finite element method (FEM) solver
[20,21] to the ParaDiS DD simulator [22] following the methodol-
ogy of van der Giessen and Needleman [23]. A detailed description
of the DD and FEM algorithms can be found in Refs. [22,20], respec-
tively. We briefly discuss the main features specific to modeling
dislocation–void interactions.

The focus of this work is to identify the minimum resolved
shear stress (sc) required for a dislocation to bypass a periodic
array of voids. To this end, we follow the model setup of Scatter-
good and Bacon [19], shown in Fig. 1, where an infinite straight
edge dislocation is placed near a 1D array of voids. A shear stress
(rext

xy ) is applied to drive the dislocation towards the void array. If
an equilibrium configuration exists in which the dislocation
remains attached to the void, rext

xy is increased until the dislocation
breaks away and bypasses the void array. sc is determined when
the value of the rext

xy to bypass the voids is within 1% of the stress
to achieve equilibrium. We assume that a static equilibrium has
been reached when the peak of the bowed-out dislocation line
has not advanced for at least 104 time steps. Simulations with a
stricter criteria requiring no advancement for 105 time steps show
no effect on sc .

Peach–Koehler forces are computed on each dislocation seg-
ment. The forces include contributions from the externally applied

stress (f ext), image stress (f img), and the stress due to all dislocation

segments in the system (f disl). The calculation of f ext in previous DD
simulations with voids have assumed only a uniform applied stress
field [19]. However, under an applied stress, stress concentrations

occur around the void and alter the local stress field. In order to
determine the effect of these stress concentrations, we compare
the results of sc using a uniform applied stress to the results explic-

itly including the stress concentrations. The computation of f disl is
performed in ParaDiS using the non-singular dislocation stress
field [24] with a core radius of 1b.

Image forces are required due to the presence of voids and the
resulting deviation of dislocation stress field from that in an infi-
nite body. Enforcement of traction free boundary conditions on
the surfaces and solving the resulting linear elastic boundary value
problem (BVP) provides the corrective image stress field. The
image stress is then superimposed with the stress field due to
the dislocations in an infinite body [23]. Conservation of the Burg-
ers vector is assured by the introduction of virtual segments
[25,20] extending from the surface-piercing dislocations to the
center of the void [26] (c.f Fig. 1).

In order to avoid the high computational expense of numeri-
cally calculating the image stress field, analytic solutions for the
image stress and resulting image force have been developed for
some simple geometries. For example, a solution for a straight,
semi-infinite dislocation piercing the free surface of a half space
was introduced by Lothe [27]. This solution yields a particularly
simple dislocation equilibrium condition [19]

E cosðhÞ � E0 sinðhÞ ¼ 0 ð2Þ

where E is the strain energy per unit length of a dislocation, h is the
angle between the dislocation line and the free surface as shown in
Fig. 2, and E0 ¼ @E=@h is the orientation derivative of E. In Fig. 2b, we
illustrate how the left hand side of Eq. (2) can be used to approxi-
mate the image forces acting on the dislocation at the surface-
dislocation intersection point. Further details on how the Lothe
equation is employed to approximate the image forces from a void

Fig. 1. Schematic of the simulation model setup. Virtual segments are represented
by the dotted lines connecting the dislocation line to the center of the voids.
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