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A model metallic glass exhibits size-independent tensile ductility
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A B S T R A C T

Metallic glasses (MGs) usually suffer brittle fracture under uniaxial tension due to size-dependent shear
band cavitation. Here we developed a concurrent multi-scale simulation method to describe the uni-
axial tension of a binary Lennard-Jones (BLJ) model glass up to 88 microns in length. No cavitation or
brittle fracture was found even for the longest BLJ sample. As the length increases, the shear band tem-
perature increases, then saturates, while the elastic unloading from shear-off diminishes. We conjecture
that the shear band of a BLJ sample, even with a macroscopic length, cannot reach the herein estimated
critical cavitation conditions. Thus, BLJ samples appear to be free of size-induced tensile brittleness. Based
on the shear band evolution and the critical cavitation conditions, we propose three classes of MGs in
terms of tensile ductility: brittle-MGs (brittle for all lengths), normal-MGs (ductile for short samples,
brittle for long samples), cohesive-MGs (ductile for all lengths). Our simulation results illustrate limita-
tions of existing molecular models, and suggest that certain experimental metallic glasses may be free
of size-induced tensile brittleness.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Metallic glasses (MGs) can exhibit high toughness [1], high
strength [2–4] and excellent formability [5,6]. Although certain
amount of ductility can be achieved under both compression and
bending [2,3,7,8], monolithic metallic glasses lack tensile ductili-
ty, constituting the major drawback for load bearing applications.
To achieve tensile ductility, various microstructural engineering ap-
proaches have been investigated, including the introduction of
crystalline phases [9,10], regular pores [11], notches [12,13], or struc-
tural gradient [14]. Aside from microstructural engineering, it is
generally believed that the tensile brittleness of metallic glasses is
size-dependent, which has been demonstrated experimentally
[4,15–17]. Thus, an alternative approach to achieve tensile ductil-
ity is to reduce the MG sample length.

However, the size-dependent tensile ductility in MG system has
not been fully understood [4,16–23]. The brittle tensile fracture of
macroscopic MG sample generally results from the development of
a run-away shear band, which transits to a crack via shear band cavi-
tation, causing catastrophic failure. The critical shear band cavitation
process occurs within nano-second in a shear band of nano-meter
thickness, on which direct quantitative experimental characteriza-
tion is extremely challenging [24]. To this end, atomic-scale
simulations [25–29] with high temporal and spatial resolution
become increasingly important to understand the fracture process

of metallic glasses. However, there are only few atomic-scale simu-
lations on size-dependency of MG systems. We have previously
shown ductile-to-brittle transition as sample length increases in a
model modified binary Lennard-Jones (mBLJ) system using full-
atomic molecular dynamics (MD) simulations [30]. To our best
knowledge, there is no report on other model glass forming system
that exhibits such size-dependent behavior in uniaxial tension. One
possibility is that the critical length for the ductile-to-brittle tran-
sition is too long to simulate with full MD simulations. Alternatively,
such size-dependent tensile ductility may not be universal among
all glass formers.

To address this issue, we selected a well-studied Wahnstrom
binary Lennard-Jones (BLJ) system to examine whether it exhibits
size-dependent tensile ductility. To simulate long samples, we de-
signed a concurrent multi-scale simulation technique to model
uniaxial tension test on metallic glass samples with a length up to
88 microns. The multi-scale scheme combines an atomic region con-
taining the shear band and the vicinity, while the rest of the sample
is modeled at the continuum level. This scheme takes advantage
of the fact that plasticity and possible cavitation only occur in a highly
localized region, i.e., the shear band, while the rest of the material
serves merely as heat-conducting elastic medium. Based on the es-
timated critical shear band cavitation conditions and the
thermomechanical evolution of the shear band under uniaxial
tension, we conjecture that BLJ system does not exhibit shear band
cavitation at infinite length. Therefore, BLJ system does not exhibit
size-dependent tensile ductility, instead, exhibits size-independent
ductility under uniaxial tension. We further propose a classifica-
tion of metallic glasses in terms of the tensile ductility.
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2. Multi-scale simulation setup

The brittle fracture of a typical MG sample under uniaxial tension
proceeds as follows. The sample first elastically deforms, usually fol-
lowed by the development of a dominant shear band. The shear band
then glides, and may transit to crack via cavitation within the shear
band. Therefore, the shear banding region (typically nm-in-thickness)
plastically flows and cavitates, while the rest of sample only deforms
elastically and conducts heat, as shown in Fig. 1. Such situation is
well suited for a concurrent multi-scale simulation: the atomic-
level details in the shear band and its vicinity (very small region
of the sample, shown in the right pane of Fig. 1) will be captured
by MD simulations; the elastic response and thermal conduction
of the rest of the sample will be described at the continuum-level.
Note that periodic boundary conditions are present in all three di-
rections in the MD region. This multi-scale simulation strategy allows
significant speed-up compared to the full-MD simulations, thus per-
mitting simulations of samples up to 88 microns.

Similar to our previous work on shear band cavitation [30], we
considered a thin-slab sample under plane strain conditions (cor-
responding to a thick sample in experiments). The mechanical and
thermal coupling between the MD simulation and the continuum-
level modeling will be described in details below.

2.1. Mechanical coupling

2.1.1. Elastic regime
First we will establish the relations for both stress and strain

between the MD region and the entire sample. As shown in Fig. 1,
the stresses in the MD region (the shear band and its vicinity) are
denoted as σxx, σzz and σzx, in the Cartesian system of xyz. x-, y-, z-axes
point along the shear band direction, the paper normal direction
(or the thickness direction of the slab), and the direction normal
to the shear band, respectively. The tensile stress of the entire sample
is denoted as σL. Resolving the tensile stress of the sample, it is
straightforward to have,

σ σ θxx L= cos2 (1)

σ σ θ θzx L= sin cos (2)

σ σ θzz L= sin2 (3)

θ is the angle between the soon-to-be-formed shear band and
the loading direction. Here θ is taken as 45°. Similarly, one can also
relate the loading strain εL of the whole sample to the tensile strain
εzz of the MD region. As shown in Fig. 1, the horizontal contraction
strain of the whole sample is v

v L1− ε given plane strain conditions (v
is the Poisson’s ratio). Through strain tensor rotation, one can obtain,
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The elastic deformation of the continuum regime is trivial as the
elastic constants of the model MG system are known. Nonethe-
less, one needs to elastically load the MD region that is consistent
with the shear band angle. Here, the MD region is subjected to a
constant strain rate tension in the direction normal to the shear band
(z-direction, as shown in Fig. 1), with two barostats that control the
normal stresses in the transverse direction (σxx) and the shear stress
(σxz) as follows,

� �ε θ θ εzz Lsin
v

v
cos= −

−
⎛
⎝⎜

⎞
⎠⎟

2 2

1
(5)

σ σ θxx zz= cot2 (6)

σ σ θzx zz= cot (7)

Here σzz is the instantaneously measured normal stress in the
z-direction. In this way, within the elastic loading regime, mechan-
ical equilibrium between the continuum regime and the MD regime
(i.e., Eqs. (1)–(3)) is guaranteed. Furthermore, the stress–strain re-
sponse of the whole sample can be obtained from the MD
simulation: the tensile stress of the whole sample σL can be ob-
tained according to Eq. (3) from σzz, and the strain of the whole
sample εL can be obtained according to Eq. (4) from εzz.

2.1.2. Plastic regime
During plastic deformation, mechanical equilibrium, guaran-

teed in the elastic regime, can be violated due to localized shear
banding. Fig. 2 shows the driving resolved shear stress σzzcotθ and
the resisting shear stress σzx using the elastic coupling scheme de-
scribed above. It is apparent that as shear band forms (the visible
drops in both stresses due to structural softening [25,31]), mechan-
ical equilibrium can no longer be maintained. Here we identify the
system configuration just prior to shear band formation, as σzx

Fig. 1. Illustration of the multi-scale simulation strategy on a uniaxial tensile test
of a metallic glass sample, which exhibits a single dominant shear band (colored
red). The MD region describes part of the shear band and its vicinity (zoomed-in
view on the right), while the rest of the sample is treated at the continuum level.
(For interpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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Fig. 2. The driving shear stress σzzcotθ and the resisting shear stress σzx as a func-
tion of the tensile strain. The elastic deformation ends approximately around 5.5%
strain, at which the driving shear stress becomes higher than the resisting shear stress.
The inset shows a zoomed-in view of the same plot.
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