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a b s t r a c t

The novelty of the proposed level-set approach to grain growth resides in the explicit consideration of
structural interfacial elements of the microstructure. The extensions allow to consider anisotropic grain
boundary energies and triple junction drag in polycrystalline materials. The simulated predictions were
compared to analytical expressions for the growth rate of grains under the influence of a finite triple junc-
tion mobility with excellent agreement.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Subsequent to recrystallization, polycrystals undergo grain
growth during annealing. Grain growth is driven by the elimina-
tion of grain boundary surface to minimize the free energy of the
polycrystal. It proceeds by the motion of the grain boundaries
(GB) towards their center of curvature and induces a continuous
topological rearrangement. This process is decisive for the proper-
ties of the resulting microstructure after heat treatment and conse-
quently for the macroscopic properties of crystalline materials.

In an ideal isotropic system, where grain boundary motion is
only affected by the local curvature, GB migration leads to a mini-
mization of the total GB in the polycrystal. This evolution is often
described as a motion by mean curvature of the GBs [1–7]. In an
anisotropic scenario, the evolution of the GB network obeys to dif-
ferent rules of energy dissipation. Dihedral angles at triple junc-
tions depart now from 120� due to different energy densities of
adjacent GBs. Additionally, grain boundary motion can also be
affected by their possibly distinct mobilities [8–10]. This interplay
is reflected in the way microstructure evolution proceeds concomi-
tantly with a change in the misorientation distribution function
(MODF) [7]. Furthermore, as shown recently in several investiga-
tions [13,11,12,8,14], the properties of triple junctions (TJ) can
decisively influence microstructure evolution especially in
ultra-fine grained or nanocrystalline materials and lead normally
to different grain growth kinetics [15,16].

Due to the restrictions and difficulties to study experimentally
dynamic processes in nanocrystalline materials, a considerable
number of investigations [13,17–23] have been carried out by
means of computer simulations. For this task, several models have
been developed. They can be roughly separated into two classes
based on their deterministic or probabilistic approach to represent
microstructure evolution. Vertex models (VM) [13,17,20,24–27],
phase field models (PFM) [28–31] and level-set models (LSM)
[4,5,7] are examples of deterministic algorithms, whereas in the
class of probabilistic approaches the Monte Carlo Potts models
(MCP) [18,19,32] are widely used.

It is also possible to classify deterministic models in the way a
microstructure is internally represented. For instance, in vertex
or network models only the GBs and their junctions are discretized
but not the interior of the grains. In these models, a grain is defined
by the volume enclosed by the grain boundaries. In contrast, phase
field and level-set methods discretize the volume of the polycrystal
and thus, they do only represent microstructural elements such as
grain boundaries, triple lines and quadruple junctions implicitly.
The abstraction of the microstructure in network models, such as
VMs, allows a clear interpretation of the physics of grain growth
however at the cost of high computational complexity due to the
necessity of implementing rules for topological transformations.
On the other hand, in most models where a volume discretization
is utilized, the topological transformations are solved automati-
cally by a natural constraint prohibiting overlaps and free space.
In these models, however, the topological features are not resolved
explicitly and thus effects stemming from structural elements
other than the GBs need to be modeled in roundabout ways. We
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propose an algorithmic solution to fill this apparent gap in existing
grain growth models and demonstrate the consideration of finite,
in particular low mobilities of TJ in a 2D level-set framework.

A level-set model for grain growth was introduced by Elsey,
Esedoglu Smereka in [7]. They factorized the motion by mean cur-
vature by varying the convolution kernel along the GBs. The chal-
lenge of utilizing level-set functions to represent the
microstructural evolution of a polycrystal is due to the simultane-
ous tracking of the isosurface and the affecting scalar field, describ-
ing the anisotropy of the GBs on each grid point in an area around
the interface. In contrast to VMs, the GB is not an explicit object in
PFM or LSM models. The representative implicit function always
needs to inherit the structural property of the original GB at each
grid point. For this reason, VMs were already successfully extended
[13,17] to consider the effect of finite TJ mobilities in 2D and
quadruple junction mobilities in 3D.

Regarding level-set methods, the model developed by Elsey
et al. [5,7] shows great potential due to its computational efficiency
and long term stability in 3D. For this reason, in the present contri-
bution, this model was further developed to consider the effect of
grain boundary junctions.

The current algorithm was designed for parallel computer
architectures by dividing the microstructure into its smallest pos-
sible object, i.e. grains. A grain-object stores the corresponding
level-set functions, its position in space, and the local topology.
Since most of the operations in the level-set approach are applied
at a grain level, it is possible to create independent computational
tasks and utilize an OpenMP parallelization approach to reduce
considerably the time-to-solution. The parallelization is not further
discussed in the present contribution but will be published else-
where [33]. The grain growth level-set (GraGLeS++)1 simulation
tool is provided as open source code.

In the present contribution, we utilized a parallel algorithm to
study the effect of finite triple junction mobilities on 2D grain
growth. For this, we first analyze the evolution of a four-sided crys-
tal in a well defined environment and compare it to the predictions
of an analytical expression derived in [13]. Results on the behavior
of different topological classes of an evolving polycrystalline net-
work are discussed subsequently. Finally, the grain growth kinetics
of large-scale simulations will be presented and discussed - with
special emphasis on the effect of the transient time and initial
microstructure on the kinetic growth exponent.

2. Level-set algorithm

Since this method was introduced by Osher and Sethian [1], it
has been successfully applied to a vast number of physical pro-
cesses that involve interface motion. The level-set method is a
mathematical framework to describe surfaces and their evolution
with time. The method uses an implicit real-valued function
(/ðt; xÞ) that is evaluated on a fixed Cartesian grid. The isosurface
with level zero or zero level-set of the implicit function describes
the position of the surface (C):

C :¼ fx 2 X j/ð0; xÞ ¼ 0g � X ð1Þ

Note, that the zero level-set is a subset of the domain X, where the
function / was defined on. Instead of computing the motion of the
parameterized surface, the idea of the method is to track the evolu-
tion of the implicit funtion with time. The position of the surface
can be always identified as the zero level-set at time t > 0.

In order to couple the motion of different phases, these algo-
rithms utilize a ’’Predictor–Corrector’’ procedure, where the
motion of individual objects is first locally performed and then

globally corrected. Originally, the model was only able to simulate
ideal grain growth. Only recently, it was enhanced by Elsey et al.
[5] to consider different grain boundary energies.

In this section, we present a new level-set algorithm for the
simulation of anisotropic grain growth in polycrystalline materials,
considering the effect of finite triple junction mobilities in two
dimensions.

2.1. Level-set framework - the evolution of individual surfaces

To begin with, we want to link the evolution of a single closed
surface to the evolution of a unique level-set function. Therefore,
let Cð0Þ � X � R2 be an initial closed surface inside the domain
X and

e½C� ¼
Z

C
cðnCðxÞÞdx ð2Þ

denote the energy of a surface. c : C! R is a phenomenological
function of unit normal vectors, describing the energy density per
unit area on the surface. The energy minimization inevitably leads
to the evolution of such surface. Thus, any point x 2 CðtÞ on the sur-
face at a certain time t will move in its normal direction nCðt; xðtÞÞ
with a velocity:

vðt; xðtÞÞ ¼ mðnCðt; xðtÞÞÞcjðxÞ; ð3Þ

where m denotes the mobility of a point xðtÞ 2 C [34].
Given the initial closed surface C0, we define a function /ðt; xÞ

on R2 � ft P 0g, which fulfils Eq. (1). Thus, the isosurface with
level 0 of the function /ðt; xÞ describes the position of the initial
closed surface. Such a function is called the level-set function.
Since numerous functions meet this requirement an additional
constraint is needed to ensure uniqueness of /ðt; xÞ:

r/j j ¼ 1; 8x 2 X: ð4Þ

Thus, the level-set function gives the distance to the nearest point
on its zero level set for each x 2 X. Such function is called a
signed-distance function and it will be referred to as d. In terms
of the signed-distance function, we can describe the unit normal by

n ¼ r/
r/j j ¼ rd ð5Þ

and the curvature of the isosurface by

j ¼ r � n ¼ r � r/
r/j j

� �
¼ r � rdð Þ: ð6Þ

By construction of the total derivative of CðtÞ we obtain an
equation of motion for the level-set function:

@/ðt; xðtÞÞ
@t

� r/ðt; xðtÞÞ � @xðtÞ
@t
¼ 0 ð7Þ

() @/ðt; xðtÞÞ
@t

� r/ðt; xðtÞÞ � vðxðtÞÞnðxðtÞÞ ¼ 0 ð8Þ

Utilizing the velocity defined in Eq. (3), we obtain the
well-known level-set function:

@/
@t
� vn r/j j ¼ 0: ð9Þ

Eq. (9) allows us to track the evolution of an implicit function
instead of the original surface. At first hand, this might be perceived
as too laborious but the advantages will become clearer in the
following.1 https://github.com/GraGLeS/GraGLeS2D.git.
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