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a b s t r a c t

In this short note we articulate the need for a new approach to develop constitutive models for the non-
linear response of materials wherein one is interested in describing the Cauchy–Green stretch as a non-
linear function of the Cauchy stress, with the relationship not in general being invertible. Such a material
is neither Cauchy nor Green elastic. The new class of materials has several advantages over classical
elastic bodies. When linearized under the assumption that the displacement gradient be small, the
classical theory leads unerringly to the classical linearized model for elastic response, while the current
theory would allow for the possibility that the linearized strain be a non-linear function of the stress.
Such bodies also exhibit a very desirable property when viewed within the context of constraints. One
does not need to introduce a Lagrange multiplier as is usually done in the classical approach to
incompressibility and the models are also more suitable when considering nearly incompressible
materials. The class of materials considered in this paper belongs to a new class of implicit elastic
bodies introduced by Rajagopal [19,20]. We show how such a model can be used to interpret the data for
an experiment on rubber by Penn [18].

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A material such as rubber is capable of sustaining large
deformations wherein the relationship between the strain and
stress is non-linear, and since the dissipation is negligible such
materials are modeled as non-linear elastic bodies. The classical
approach to modeling such models is to describe them as Cauchy
elastic [5,6] bodies or Green elastic bodies1 (see Truesdell [29] for a
definition of such elastic bodies). Recently, a much larger class of
models have been proposed to model the response of such
materials by Rajagopal (see [19,20]) which includes the classical
Cauchy and Green elastic bodies as a subclass but it also includes
another subclass, models wherein an appropriate kinematical

measure is expressed as a function of the Cauchy stress. Such an
approach has several distinct advantages over the classical model:
first, when such models are linearized under the assumption that the
displacement gradient be small, they lead to models wherein the
linearized strain is a non-linear function of the stress; second, within
the context of such new models there is no need to introduce a
Lagrange multiplier when dealing with a constraint such as incom-
pressibility; third, such models are more in keeping with the notion of
causality in classical Newtonian mechanics wherein force (and
consequently the surface traction and thus the stress) is viewed as
the cause and the kinematics is viewed as the effect.

With regard to the first advantage, we recall that linearization
based on the displacement gradient being small within the context
of the classical model leads inexorably to the classical linearized
elastic model. This presents an interesting predicament to
describing response wherein the relationship between the strain
and the stress is non-linear even within the context of small
strains. Of course, all sorts of ad hoc models wherein stress is
expressed as a non-linear function of the linearized strain have
been used, but these models have no proper basis and are self-
contradictory as non-linearities in the strain are ignored in the
first place in defining the linearized strain.2 The dilemma of
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1 Green elastic bodies [13,14], also referred to as hyperelastic bodies, can be

considered as a subclass of Cauchy elastic bodies, wherein the stress in such
materials is derivable from a potential. Green [14] observed that an elastic body
whose stress is not derivable from a potential would give rise to a perpetual motion
machine. Recently, Carroll [4] showed that a Cauchy elastic body that is not Green
elastic is indeed an infinite source of energy. However, it is possible that there could
be elastic bodies that are not Cauchy elastic (nor Green elastic) which are defined
through implicit constitutive relations between the Cauchy–Green tensor and the
stress, and the stress in such bodies need not necessarily be derivable from a
potential. However, within this more general class of bodies, there are counterparts
of Green elastic bodies in that the strain is derivable from a complimentary stress
potential. This study is devoted to the behavior of bodies described by implicit
constitutive relations between the Cauchy–Green tensor and the stress that are
neither Cauchy elastic nor Green elastic.

2 The new class of models which allows for the linearized strain to depend
non-linearly on the stress allows one to tackle one of the most difficult problems in
solid mechanics in a consistent manner. The manner in which the problem of
fracture has been treated within the framework of linearized elasticity is totally
inconsistent. At the tip of a crack, the linearized theory of elasticity predicts that
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needing a model wherein the stress and the linearized strain are
related in a non-linear manner can be overcome if one could have
the possibility of elastic bodies that are more general than Cauchy
elastic or Green elastic bodies which when linearized would lead to
models wherein the stress and linearized strain are related in a
non-linear manner. Since one cannot have consistency if one
linearizes the non-linear strain but allows for a non-linear function
of the linearized strain, we immediately realize that a non-linear
relationship between the linearized strain and stress is only
possible by allowing a relationship in which the linearized strain
appears linearly, but the stress appears in a non-linear fashion. This
is precisely what is achievable with the new class of elastic bodies
introduced recently by Rajagopal and co-workers (see [19–22]).
The advantages with regard to not having to introduce a Lagrange
multiplier is that we do not have to deal with a part to the stress
that is indeterminate. Constraints also become a part of the
constitutive specification.

Rajagopal [19] introduced implicit constitutive relations
between the stress and the Cauchy–Green stretch to describe the
response of elastic bodies. The implicit class of bodies introduced
by Rajagopal includes Cauchy elastic bodies as a special sub-
class. Later, Rajagopal and Srinivasa [24,25] provided a thermo-
dynamic basis for such elastic bodies and Bustamante and
Rajagopal [2,3] developed implicit constitutive relations to describe
the response of electroelastic bodies. Recently, Freed [12] has
shown that such models can be used to describe the response of
soft solids.

We fit the experimental data of Penn [18] with the aid of the new
class of models. This data could also be fit with the classical Green
elastic model. However, our aim is to show that the new class of
models, which has several advantageous features over the classical
Cauchy and Green elastic bodies, can be used to fit the data as well
as the classical model.

The organization of the paper is as follows. In the next Section
we introduce the kinematics and develop the constitutive model.
In Section 3, we fit the experimental data obtained by Penn [18]
with a specific model that belongs to the class derived in the
previous section.

2. Constitutive relations

Let x denote the current position of a particle3 which is at X in a
stress-free reference configuration. Let x¼χ(X,t) denote the
motion4 of a particle and let us denote the displacement by

u : ¼ x−X: ð2:1Þ

The displacement gradients ∂u/∂X and ∂u/∂x are given by

∂u
∂X

¼∇Xu¼ F−1; ð2:2Þ

and

∂u
∂x

¼∇xu¼ 1−F−1; ð2:3Þ

where F is the deformation gradient defined through

F¼ ∂χ
∂X

: ð2:4Þ

The Cauchy–Green stretch tensors B and C are defined through

B : ¼ FFT ; C : ¼ FTF: ð2:5Þ
The Green–St. Venant strain E and the Almansi–Hamel strain e

are defined through

E : ¼ 1
2
ðC−1Þ; e : ¼ 1

2
ð1−B−1Þ: ð2:8Þ

The linearized strain ε is given by

ε¼ 1
2

∂u
∂x

� �
þ ∂u

∂x

� �T
" #

: ð2:9Þ

The above kinematical definitions suffice for our purpose.
We recall that a body is said to be Cauchy elastic if the Cauchy

stress is related to the deformation gradient through

T¼ gðFÞ; ð2:11Þ
for all non-singular deformation gradients. Frame indifference
places restrictions on the constitutive Eq. (2.11) and it follows that
the stress has to be expressed as

T¼ RfðUÞRT : ð2:12Þ
where R and U are the rotation and the stretch that appear in the
polar decomposition F¼RU.

On appealing to standard methods used in continuum
mechanics, in the case of a general compressible homogeneous
isotropic Cauchy elastic body (see Truesdell and Noll [30]) the
Cauchy stress is given by:

T¼ δ1Iþ δ2Bþ δ3B
2; ð2:13Þ

where δi, i¼1, 2, 3 depends on ρ, I1¼trB, I2¼(1/2){(trB)2−trB2}, and
I3 ¼ detB, or equivalently by ρ, trB, trB2 trB3. In fact any integrity
basis can be used and we will see that while the integrity basis
documented above might be suitable for theoretical calculations, it
gives rise to serious problems with regard to data reduction.

In the case of an isotropic homogeneous non-linear elastic
body, the stress is given by

T¼ −pIþ δ2Bþ δ3B
2; ð2:14Þ

where −pI denotes the indeterminate part of the stress due to the
constraint of incompressibility, and δi, i¼1, 2, depends on ρ, trB,
(1/2){(trB)2−trB2}, Since the material is incompressible, it can
undergo only isochoric motions and hence detB¼ 1. It is impor-
tant to recognize that p is not the “pressure” in the solid where
usually the term “pressure” is used to signify the mean normal
stress in the body.

Recently, Criscione and co-workers (see [7–11]) have pointed
out that using an integrity basis that consists in the principal
invariants of the tensor B or the integrity basis that is given in the
line following Eq. (2.12) gives rise to serious difficulties when it
comes to experimental data reduction. This is because of what
Criscione and co-workers refer to as the “collinearity” of the
integrity basis.5 In a series of papers, Criscione and co-workers

(footnote continued)
the strain has a singularity and grows like 1=

ffiffiffi
r

p
, where r is the radial distance from

the tip of the crack. One might try to absolve this inconsistency by stating that the
response close to the tip of the crack is dissipative, and numerous ad hoc fixes
based on the response being inelastic have been proposed. However, in a brittle
material, at sufficiently low temperature, one expects cracks to propagate without
significant dissipation. The new class of materials allows one to show that strains
can remain bounded and below a value that can be fixed a priori to be small
thereby not leading to any inconsistency in the analysis (see Rajagopal and Walton
[26], Kulvait et al. [16], Ortiz et al., [17], Bulicek et al. [1]).

3 We shall not concern ourselves with a rigorous definition of what is meant by
a body, placer, configuration, etc. The interested reader can refer to the book by
Truesdell and Noll [30].

4 As the form of the motion depends on the choice of the reference config-
uration, if one wanted to be precise one would identify this fact by indexing the
motion to reflect this fact. In the interest of simplicity, we shall not do so here.

5 Thedifficulty thatarises in thedata reductioncanbebestunderstoodwithavery
simple example.While i, j,k and i, i+10nj,k also formabasis, in the latter basis certain
small changes in a directed line segment get distorted tremendously or a large change
get trivialized, depending on the value of n, how large and whether positive or
negative, leading to an erroneous interpretation of the results (see [23]).
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