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Thermoelectric properties of materials with compositions on and near the band crossing line connecting
Mg>Sng.765Gep22Sbo.015 and MgaSng g5Si0.3Sboo15 in the MgaSn—Mg,Ge—Mg)Si system are investigated.
Although ZTs are very similar, power factors are different. On the line, the power factor decreases from
Mg,Sno.765Gep.22Sbo 015 to MgaSng es5Sip 3Sboo1s, and off the line, the power factor also decreases. The
output power and energy conversion efficiency are calculated using engineering power factor (PF)eng and

figure of merit (ZT)eng. It is shown that although similar energy conversion efficiency of ~11% could be
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achieved for all compositions studied, the output power are different, increasing from ~9.1 W cm 2 for
Mg>Sng 6855i0.35b0.015 to ~10.3 W cm 2 for Mg»Sng 765Geo.22Sbo.o15, due to the different power factors.

© 2015 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

1. Introduction

Thermoelectric materials, converting heat energy into elec-
tricity, have received extensive attentions due to their potential
roles in increasing energy conversion efficiency in vehicles, boilers,
solar generators, etc. [1-5]. Thermoelectric performance of power
generation devices requires not only high conversion efficiency but
also large output power [6,7]. On the basis of constant property
model, the maximum energy conversion efficiency (nmax) and
output power (wmqx) are related to material parameters figure of
merit (ZT) and power factor (PF), respectively, as following [7].
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where ZT = S2T/px, PF = S?[p, and T = (Ty + T¢)/2, S is Seebeck
coefficient, p is electrical resistivity, « is thermal conductivity, Lieg is
length of leg, Ty is hot side temperature, and T¢ is cold side
temperature.

For the Mg,;Sn—Mg,Ge—Mg,Si system, most of the research has
focused on Mg,Sn—Mg,Si [8—23], with limited reports on
Mg,Sn—Mg,Ge [7,24] and Mg,Ge—Mg,Si [25—29]. Improved ZT
from Si alloying effects were early demonstrated in Mg,Sn—Mg5Si
system, and the best property was achieved in Mg,SnggSig4 [9].
Recently, there are increasing interests in reinvestigating the
Mg>Sn—Mg,Si system around the composition of Mg,SnggSio 4
[10,11,16,19,22,23]. One of the investigations found that
Mg,Sng 7Sio.3 has higher power factor (~47 pW cm~! K2 at 523 K)
and hence higher ZT (~1.3 at 700 K) than Mg,SnggSip.4 due to the
composition caused band crossing (or band convergence) [16].
Recently, Liu et al. reported Mg,Sng75Gegs is even better than
Mg»Sng7Sig3 with higher PF (~55 pW ecm~!' K2 at 623 K) and
higher ZT (~1.4 at 723 K) with a similar band crossing in
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Mg,Sn—Mg,Ge system happened near the composition of
Mg>Sng.75Geg 25 [7]. According to our recent understanding [30], in
the Sn-poor region (purple in Fig. 1a), it would have a light con-
duction band (C;-band) at the bottom which is mainly from the
hybridized 3p orbital of Mg with the s-orbital and d-eg orbital of IV
elements (i.e., Sn, Ge, Si) as shown in Fig. 1b. In contrast, in the Sn-
rich region (blue in Fig. 1a), it has a heavy conduction band (Cy-
band) at the bottom which is the hybridization between 3s-obital of
Mg with the d-tpg orbital of IV elements, shown in Fig. 1d. Thus, at
certain composition, the Ci-band and Cy-band would converge,
shown in Fig. 1c.

For Mg,Sng 7Sig.3 and Mg,Sng 75Geg 25, their high thermoelectric
performance are mainly attributed to the band crossing. It is ex-
pected that the band crossing would also occur in compositions on
and near the line connecting Mg>Sng 7Sip 3 and Mg,Sng 75Geg 25 in
the Mg,Sn—Mg,Ge—Mg5,Si system with a possibility of even higher
thermoelectric performance. It is noted that there are several re-
ports on thermoelectric properties of Mg,Sn—Mg,Ge—Mg,Si sys-
tem [23,24,31-33], as shown in Fig. 1a. Most of them are about
partial substitution of Sn by Ge in MgySnggSigs, such as
Mg2Sng 55Gep.05Sip.4 and Mg,Sng 5Geg10Sio4 [6], However, from the
band crossing map (Fig. 1b—d), substitution of Ge for Sn in
Mg,Sng 6.yGeySip4 brings the material away from the line con-
necting Mg,Sng 75Geg 25 and Mg,Sng 7Sip.3, which lose the benefits
of the unique band structure. Tada et al. [24]| has conducted an
investigation on Mg,SnyGeg1Sipg_x (X = 0.6, 0.65, 0.75, 0.9), near
the line. However, they only did the composition Mg,Sng gGeg1Sio 3,
showing an n-type behavior and also poor electrical conductivity.
To our best knowledge, there is still lack of investigation about the
compositions on and near the line connecting Mg,Sng 75Geg 25 and

(a)

Mg,Sn-Mg,Ge

Mg,Sng 75Geg 25 Ref [7]
Mg,Sn,;Gegs  Ref [30]
Mg,SngsGe,,  Ref [30]
Mg,SnyoGe,;  Ref[24]
Mg,Si-Mg,Ge
Mg,Siy,Geyg  Ref [25]
Mg,Si;4Geys  Ref [25]
Mg,Si, (Ge,, Ref[25,29]
Mg,Si,sGeg, Ref[25]

Mg,Sng 7Sip 3 in the MgySn—Mg,Ge—MgoSi system.

Therefore, the motivation of this work is to investigate the
thermoelectric properties of materials in the
Mg,Sn—Mg,Ge—Mg,Si system on and near the line connecting
Mg,Sng.78Geg 22 and Mg,Sng 7Sigs. It is noted that Mg,Sng 75Geg 25
is slightly deviate from the theoretically predicted band crossing
point of Mg,Sng 78Gep 22 [ 10]. In our previous work, Mg>Sng 75Geg 25
was investigated, while Mg,Sng 78Geg 22 has not yet been studied. In
this work, we have studied compositions on and near the line
connecting Mg,Sng 78Gep22 and Mg,Sng 7Sip 3. The thermoelectric
performances were further evaluated by using engineering power
factor (PF)eng and figure of merit (ZT)eng [34], which consider the
temperature dependence of thermoelectric properties over the
whole temperature range of the hot and cold sides.

2. Experimental section
2.1. Synthesis

High purity magnesium turnings (Mg, 99.98%; Alfa Aesar), tin
powder (Sn, 99.8%; Alfa Aesar), germanium powder (Ge, 99.9999%;
Alfa Aesar), silicon shots (Si, 99.999%; Alfa Aesar), antimony shots (Sb,
99.999%; Alfa Aesar) were weighed according to the composition of
Mg2(Sno.765Ge0.225b0.015)1-x(SNo.6855i0.3Sb0.015)x (X = 0, 0.2, 0.4, 0.6,
0.8, 1). Moreover, samples near the line connecting
Mg>Sno 765Ge022Sboo1s and MgaSng e85Sin3Sboo1s were also pre-
pared, i.e., Mg;Sng g35Ge0.25510.055P0.015, Mg25n0,685G€0.15510.155D0.015,
Mg>Sno 735Geq15Si0.1Sbo.o15, Mg25n0.735Gep.05Si0.2Sboo15. For all the
samples, 3 at% extra Mg were added in order to compensate the loss of
Mg during the preparation. The elements were loaded into stainless
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Fig. 1. (a) Research on the thermoelectric properties of materials in the Mg,Sn—Mg,Ge—Mg,Si system, (b), (c) and (d) effects of composition on band convergence of

Mg,Sn—Mg,Ge—Mg,Si.
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