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a b s t r a c t

We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic,
outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the
surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial
compression of the cylinder. We use two different modelling approaches to estimate the critical axial
growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling
wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single
3-dimensional elastic body undergoing large deformations, whilst the second approach treats the
filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of
these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises
the strength of the foundation, in terms of the geometric and material properties of the system.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cylindrical structures are ubiquitous throughout the biological
world. Examples can be found across a broad range of length
scales, from microtubules within the cell to macroscopic plant
stems. Every type of structure fulfils a key role within its relevant
environment, such as oxygen and nutrient transport provided by
airways and arteries, or signal transmission carried out by axons.
Biological structures are often subject to differential growth, a
process whereby different regions of tissue within the same body
grow at different rates. This gives rise to residual stresses that exist
in the absence of any applied traction, and have important effects
on the overall mechanical behaviour of a material body [7,8].
Should the stresses within a body become sufficiently large,
material failure can occur and this may be manifested in various
ways, including fracture, cracking, plastic yield or buckling.

Rod and beam-like structures are often embedded within
another material. Examples include plant roots growing in soil,
microtubules embedded within the cytoplasm, and blood vessels
surrounded by body tissue. A simple modelling approach that can
be applied to each of these scenarios is to treat the surrounding
material as an elastic foundation. Many studies of such embedded
slender structures make use of the classical Euler beam theory [4] in
order to study the onset of buckling under the action of a
compressive force. Murmu and Pradhan [17] used Timoshenko
beam theory (an extension of Euler beam theory) to investigate
the effect of various types of elastic foundation on the critical

longitudinal buckling stress (i.e. the compressive stress at which the
tube buckles) of embedded single-walled carbon nanotubes. Their
analysis made use of a foundation modulus parameter, kf, which
characterises the amount of tranverse reinforcement of the founda-
tion acting on the tube [24,23,5]. They found that the critical
buckling pressure increases with kf, although no information is
given on how kf can be measured for a specific material. Brang-
wynne et al. performed buckling experiments on microtubules.
They applied axial loads to microtubules under two different
circumstances. First, when excised from the cell they observed that
under small axial loads, microtubules exhibited Euler-type buckling
[3]. However, when embedded within the cytoplasm they were able
to withstand a greater compressive force (imposed by applying a
normal force at the point where the microtubule meets the cell
membrane) before the onset of buckling. Moreover, once buckling
did occur, the observed wavelength was shorter than when isolated
microtubules were considered. The authors also carried out a
theoretical analysis by treating a microtubule as a cylindrical,
inextensible beam embedded within an elastic foundation. They
proposed that the observed buckling mode is that which minimises
the sum of the beam's bending energy and the energy required to
transversely displace the surrounding cytoplasm. Their analysis
uses the parameter α to characterise the transverse reinforcement
of the cytoplasm, and they estimate this parameter in terms of the
radius of the rod, a, the Young's modulus of the surrounding matrix,
G, and the characteristic buckling length scale of the structure, l as
follows:

αe1 ¼
4πG

log
l
a

� � : ð1Þ
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However, this approach is problematic, since the wavelength, l, is not
known a priori. Therefore this estimate cannot be used in any
predictive way. Furthermore, its derivation remains mysterious. An
alternative estimate of this parameter where the wavelength is
replaced by the length L of the beam was presented in [20], and
given by

αe2 ¼
4πG

log
L
a

� � : ð2Þ

As we will see, this estimate cannot be correct either as the buckling
properties of a long filament in a matrix are essentially independent of
the length of the filament. By comparing the exact buckling properties
of a cylinder under axial load in an infinite matrix with the properties
of a Kirchhoff rod on an elastic foundation we derive a new estimate
for the foundation modulus parameter.

1.1. The problem

We consider the problem of an isotropic, slender, elastic filament
embedded in an isotropic, elastic matrix. The filament and matrix are
constrained in the axial direction by two flat, rigid plates and the
filament undergoes uniform axial growth, so that it becomes axially
compressed. At a critical growth, the filament buckles. We model this
problem first by considering volumetric growth in a 3-dimensional,
non-linear elastic body. This approach has been used in a number of
previous studies of axial and circumferential buckling of hollow multi-
layered cylinders with finite radii [10,21,22,14], and exploits the idea of
multiplicative decomposition of the deformation tensor into two
components: stress-free growth and elastic response. The framework
was originally proposed by Rodriguez et al. [19], and has since been
widely incorporated into many models of volumetric growth, e.g. [14].
For the case of a neo-Hookean filament and neo-Hookean matrix we
are able to estimate the critical growth value analytically via the use of
the WKB method. Second, we consider a rod-theory formulation that
models the system as a 2-dimensional elastic beam embedded in a
Winkler foundation. Like previous rod-theory models, this approach
makes use of a foundation modulus parameter. Each approach
provides us with an estimate of the critical axial growth of the
filament and the wavelength of the resulting buckled state. The goal
of this paper is to fully describe this buckling instability and obtain an
estimate of this parameter by comparing the results of two
approaches. This foundation modulus parameter is directly related to
geometric and material properties of the system. Further, the general-
isation to a Mooney–Rivlin matrix does not alter this estimate.

2. 3-D elasticity approach

2.1. General setup

We follow closely the method outlined in [1]. Consider an
elastic body occupying a reference (stress-free) configuration, B0,
defined by co-ordinates X. The body is subject to a deformation, χ ,
so that its new configuration, Bf (which we shall refer to as the
current configuration), is defined by co-ordinates x¼ χ ðXÞ. Let
F¼ dχ=dX¼Gradðχ Þ be the geometric deformation tensor.

As described in the Introduction, the effects of growth are
incorporated into the model via multiplicative decomposition of
the deformation gradient tensor, so that F¼AG, where G repre-
sents local stress-free growth and A represents the elastic
response. Since we will restrict our attention to semi-inverse
problems where cylinders are mapped onto other cylinders, a full
description of the kinematics of growth is not required.

We assume that the body is incompressible, which implies that
only isochoric deformations are possible, that is

det A¼ 1: ð3Þ
We also assume that the body is hyperelastic, that is there exists a
strain-energy density, W, such that

T¼ A
∂W
∂A

−p1; ð4Þ

where T is the Cauchy stress tensor and p is a Lagrange multiplier
enforcing the incompressibility constraint. In the absence of body
forces, the equation of static mechanical equilibrium can be
written as

div T¼ 0: ð5Þ
For our problem, a natural choice for boundary conditions is to
prescribe the deformation on some part of the boundary and
impose a pressure, P, acting in the normal direction, n̂, on the rest
of the boundary:

T:n̂ ¼ −Pn̂: ð6Þ

2.2. Incremental deformations

We now investigate the stability of solutions of (5). We do so by
introducing a small perturbation to the finite deformation. This
perturbation is an incremental deformation, that belongs to a
wider class of deformation with no prescribed symmetry, and is
defined by

χ ðXÞ ¼ χ ð0ÞðXÞ þ ϵχ ð1ÞðXÞ; ð7Þ
where 0oϵ⪡1 characterises the size of the perturbation. Accord-
ingly, we define

F¼ ð1þ ϵFð1ÞÞFð0Þ; A¼ ð1þ ϵAð1ÞÞAð0Þ: ð8Þ
The incremental equations and boundary conditions are formu-
lated in terms of the current configuration. We expand the Cauchy
stress tensor as follows

T¼ Tð0Þ þ ϵTð1Þ þ Oðϵ2Þ: ð9Þ
Substitution of (9) into (4), gives

Tð0Þ ¼Að0Þ ∂W
ð0Þ

∂Að0Þ ; ð10Þ

Tð1Þ ¼L : Að1Þ þ Að1ÞAð0ÞW ð0Þ
A −pð1Þ1; ð11Þ

where p¼ pð0Þ þ ϵpð1Þ and L is the fourth-order tensor given by

L : Að1Þ ¼Að0ÞðW ð0Þ
AA : Að1ÞÞAð0Þ: ð12Þ

Here, W ð0Þ
A and W ð0Þ

AA are respectively the first and second deriva-
tives of W with respect to A evaluated at Að0Þ. Explicitly, the non-
zero components of L are given by [18]

Liijj ¼Ljjii ¼ αiαj
∂2W
∂αi∂αj

;

Lijij ¼ α2i

αi
∂W
∂αi

−αj
∂W
∂αj

α2i −α
2
j

; i≠j;αi≠αj;

Lijij ¼
Liiii−Liijj þ αi

∂W
∂αi

2
; i≠j;αi ¼ αj;

Lijij−Lijji ¼Lijij−Ljiij ¼ αi
∂W
∂αi

; i≠j;

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð13Þ

where αi are the principal values of Að0Þ. The equilibrium equations
are then given by

divðTð0ÞÞ ¼ 0; ð14Þ
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