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a b s t r a c t

We study model self-propelled crawlers which derive their propulsive capabilities from the tangential

resistance to motion offered by the environment. Two types of relationships between tangential forces

and slip velocities are considered: a linear, Newtonian one and a non-linear one of Bingham-type.

Different behaviors result from the two different rheologies. These differences and their implications in

terms of motility performance are discussed. Our aim is to develop new tools and insight for future

studies of cell motility by crawling.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies model locomotors that exploit shape
changes and mechanical interactions with the environment
(adhesive, viscous, or frictional resistance) for self-propulsion.
We focus on one-dimensional systems that can execute shape
changes by propagating stretching or contraction waves along
their bodies, and that interact with the environment through
tangential forces whose density at a point depends on the velocity
at that point.

We consider two force–velocity laws: a linear, Newtonian one
and a non-linear one of Bingham-type. The first one requires that
some slip must occur for the tangential force to be non-zero. The
second one requires that a force threshold be overcome for slip to
occur, and it leads to stick-slip behavior at the interface between
the locomotor and its environment.

The model system studied in this paper, and briefly described
above, arises in a variety of physical situations. The most direct
examples are those of crawlers moving on a solid substrate
lubricated by a thin layer of a viscous fluid, with the fluid being
either Newtonian or of Bingham-type. Studies of these systems
aim to discover the principles of the locomotion strategy of snails
and to replicate them with artificial prototypes [17,28,29].
Further examples include low Reynolds number swimming of
slender organisms (in the Newtonian version, if hydrodynamic
interactions are treated with the local drag approximation [26] of
Resistive Force Theory), and cells migrating on or within solid
substrates, matrices and tissues ([3], with a Bingham-like force–
velocity law [31] arising from the adhesion dynamics of receptor–
ligand binding).

The idea we pursue in this paper is to combine recent progress
in the non-linear mechanics of soft and biological matter
[12,14,22,25,32] with the insight afforded by the (non-linear)
Geometric Control Theory approach to self-propulsion [4–8,19].
Using these tools, new progress towards the understanding of key
principles of limbless locomotion in natural and engineered
systems can be obtained.

The main results of this paper are the following. We show that,
contrary to opposite claims in the literature (see the discussion in
[21]), it is possible to obtain net advancement with cyclic shape
changes even in the context of a linear, purely Newtonian interaction
with a substrate. This requires that non-linearities arising from large
deformations are correctly taken into account and exploited. On the
other hand, at given gait (a fixed traveling wave of contraction), the
displacements available with non-linear Bingham-type interactions
are consistently larger. Motion is oscillatory in time in the Newtonian
case while the displacement of a typical material point is monotonic
in time in the Bingham case. Finally, the sign of the displacement can
be inverted, at fixed gait, by changing the rheology of the interactions
with the environment.

2. Kinematics

We consider a straight one-dimensional crawler (worm) mov-
ing along a straight line. It is important to analyze the system
within the non-linear framework of large deformations, i.e., to
distinguish between material (Lagrangian) vs spatial (Eulerian)
velocities. Our developments here follow closely those in [21]
and, in turn, [16] where a general three-dimensional shape-chan-
ging body surrounded by a (Stokes) viscous fluid is considered.

We denote by X the coordinate along the worm’s body in the
reference configuration, in which the left end coincides with the
origin (X1 ¼ 0) and L is the reference length (X2 ¼ L), see Fig. 1.
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We thus have 0rXrL and the one-dimensional motion of the
worm is described by

xðX,tÞ ¼ x1ðtÞþsðX,tÞ with sð0,tÞ � 0,s0ðX,tÞ40 8XAð0,LÞ, ð2:1Þ

where a prime denotes the derivative with respect to X and

x1ðtÞ :¼ xðX1,tÞ, x2ðtÞ :¼ xðX2,tÞ: ð2:2Þ

We also have

lðtÞ ¼

Z L

0
s0ðX,tÞ dX, ð2:3Þ

where l(t) is the current length of the crawler at time t. Here, x1

describes the position of the worm (with respect to the fixed lab
frame) and s, the arc-length parameter in the deformed config-
uration, describes the shape of the worm (configuration in the
body frame, i.e., as seen by an observer moving with the worm).
In this paper, we will consider shape as freely controllable, by
assigning

s0ðX,tÞ ¼ gnðX,tÞ, ð2:4Þ

where gn is a prescribed function of space and time such that

gnðX,tÞ40 8XAð0,LÞ: ð2:5Þ

In conclusion, note that the (Eulerian) velocity at position x in
the current configuration of the worm is given by

vðx,tÞ ¼ _xðX,tÞ9X ¼ s�1ðx�x1ðtÞ,tÞ
¼ _x1ðtÞþ _sðs

�1ðx�x1ðtÞ,tÞ,tÞ: ð2:6Þ

3. Equations of motion (force balance)

We neglect inertia, so that the equations of motion reduce to
the vanishing of the component along the x-axis of the total force.
Our model worm can only exploit shape changes (extensions and
contractions along its axis) and tangential interactions with a
substrate, see Fig. 2. These are described by a force–velocity
relationship, giving the density per unit current length fðs,tÞ at
time t and at the point identified by arc-length s, as a function of
the velocity vðs,tÞ at that point and time. The corresponding
density per unit reference length is given by

fref
ðX,tÞ ¼ fðs,tÞ9s ¼ sðX,tÞs

0ðX,tÞ: ð3:1Þ

In what follows, we will only consider the components of v, f,
and fref along the axis of motion, oriented from left to right,
denoted simply by v, f, and fref. One example (Newtonian case) is

the linear viscous law shown in black in Fig. 3 and given by

f ðs,tÞ ¼�m vðs,tÞ, ð3:2Þ

where m40 is a viscosity or friction coefficient.
Another possibility (see the red dashed curve in Fig. 3), useful

to model stick-slip behavior, is the Bingham case described by

f ðs,tÞ ¼

�ty�m1vðs,tÞ if vðs,tÞ40,

tA ½�ty,ty� if vðs,tÞ ¼ 0,

ty�m1vðs,tÞ if vðs,tÞo0:

8><
>: ð3:3Þ

Denoting by NðX,tÞ the axial stress at point X and time t, the
pointwise force balance reads

N0ðX,tÞ ¼�f ref
ðX,tÞ ð3:4Þ

and, assuming that no external forces are applied at the two ends,
we also have

Nð0,tÞ ¼ 0, NðL,tÞ ¼ 0: ð3:5Þ

Using the equations above we obtain the global force balance

0¼ FðtÞ ¼

Z L

0
f ref
ðX,tÞ dX ¼

Z lðtÞ

0
f ðs,tÞ ds: ð3:6Þ

In the Newtonian case (3.2), the total force on the worm is

FðtÞ ¼�m
Z lðtÞ

0
vðs,tÞ ds

¼�m lðtÞ _x1ðtÞþ

Z lðtÞ

0

_sðs�1ðs,tÞ,tÞ ds

 !

¼�m lðtÞ _x1ðtÞþ

Z L

0

_sðX,tÞs0ðX,tÞ dX

� �
ð3:7Þ

X1 = 0 X2 = LX

0 LX
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x
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Fig. 1. Kinematics of the one-dimensional worm.
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Fig. 2. Forces acting on the crawler.
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Fig. 3. Newtonian (black solid line) and Bingham (red dashed lines)

force–velocity interaction laws. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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