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Abstract

The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic

foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon’s delta (RSD) kernel and

Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and

procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The

influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated.

Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

As parallel to the computer technology during the past
50 years, numerical methods have made significant
progress. The discrete singular convolution (DSC) method
proposed by Wei [1] in 1999 is a relatively new numerical
discretization technique for approximation of derivatives.
The DSC method has been successfully applied to solve
governing differential equations for various boundary
value and eigenvalue problems in engineering [3–4],
structural mechanics [5–12], and fluid mechanics [13], by
this time. Plates on elastic foundation have wide applica-
tions in pressure vessels technology such as petrochemical,
marine and aerospace industry, civil, and mechanical
engineering. A number of analytical and numerical studies
have been conducted on the static and dynamic analysis of
plates on elastic foundations. Long list of references on
dynamic and bending analysis of thin and thick plates on
elastic foundation are given, for example, in Refs.
[14,15,20,24]. Some selected works in this research topic

includes those of Liew et al. [16], Teo and Liew [17], Wang
et al. [18], Kobayashi and Sonoda [19].
In the present study, a numerical method is developed

for the static analysis of Mindlin plates on two-parameter
elastic foundations. The procedure is based on the appli-
cation of the DSC method. To the authors’ knowledge, this
is the first time the DSC method has been successfully
applied to Mindlin plate on elastic foundation problems
for the analysis of bending. The organization of the paper
is as follows. DSC algorithm is briefly presented in Section
2. Theory and related formulations of Mindlin plate on
elastic foundation are given in Section 3. The application of
this algorithm to title problem is given in Section 4.
Conclusions are given in Section 5.

2. Discrete singular convolution (DSC)

The DSC method was originally introduced by Wei [1] as
a simple and highly efficient numerical technique. Like
some other numerical methods, the DSC method discre-
tizes the spatial derivatives and, therefore, reduces the
given partial differential equations into a standard
eigenvalue problem. For brevity, consider a distribution,
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T and Z(t) as an element of the space of the test function. A
singular convolution can be defined by [2]

F ðtÞ ¼ ðTnZÞðtÞ ¼
Z 1
�1

Tðt� xÞZðxÞdx, (1)

where T(t�x) is a singular kernel. The DSC algorithm can
be realized by using many approximation kernels. How-
ever, it was shown [3–10] that for many problems, the use
of the regularized Shannon kernel (RSK) is very efficient.
The RSK is given by [6]

dD;sðx� xkÞ ¼
sin½ðp=DÞðx� xkÞ�

ðp=DÞðx� xkÞ

� exp �
ðx� xkÞ

2

2s2

� �
; s40, ð2Þ

where D ¼ p/(N�1) is the grid spacing and N is the number
of grid points. The parameter s determines the width of
the Gaussian envelope and often varies in association
with the grid spacing, i.e., s ¼ rh. With a sufficiently
smooth approximation, it is more effective to consider a
DSC [4]

FaðtÞ ¼
X

k

Taðt� xkÞf ðxkÞ, (3)

where Fa (t) is an approximation to F(t) and {xk} is
an appropriate set of discrete points on which the DSC of
Eq. (1) is well defined. In the DSC method, the function
f(x) and its derivatives with respect to the x coordinate at a
grid point xi are approximated by a linear sum of discrete
values f(xk) in a narrow bandwidth [x�xM, x+xM]. This
can be expressed as [5]

dnf ðxÞ

dxn

����
x¼xi

¼ f ðnÞðxÞ �
XM

k¼�M

dðnÞD;sðxi � xkÞf ðxkÞ;

ðn ¼ 0; 1; 2; . . . ; Þ, ð4Þ

where superscript n denotes the nth-order derivative with
respect to x. The xk is a set of discrete sampling points
centered around the point x, s is a regularization para-
meter, D is the grid spacing, and 2M+1 is the computa-
tional bandwidth, which is usually smaller than the size of
the computational domain. The higher order derivative
terms dðnÞD;sðx� xkÞ in Eq. (4) are given as below [7]:

dðnÞD;sðx� xkÞ ¼
d

dx

� �n

½dD;sðx� xkÞ�, (5)

where the differentiation can be carried out analyt-
ically. The discretized forms of Eq. (5) can then be
expressed as

f ðnÞðxÞ ¼
dnf

dxn

����
x¼xi

�
XM

k¼�M

dðnÞD;sðkDxNÞf iþk;j, (6)

when the regularized Shannon’s delta (RSD) kernel is used,
the detailed expressions for, dðnÞD;sðxÞ can be easily obtained.
Detailed formulations for these differentiation coefficients
can be found in Refs. [2,3]. For example, second-order

derivative is given as
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At x ¼ xk, this derivative is given by

dð2Þp=D;sð0Þ ¼ �
1

3

3þ ðp2=D2Þs2

s2
¼ �

1

s2
�

p2

3D2
. (8)

Another important kernel is the Lagrange kernel. The
differentiation in Eq. (5) can also be easily carried out for a
finite Lagrange kernel

dD;sðxÞ ¼
YM

i¼�M;kai

x� xi

xk � xi

. (9)

In this case, the first- and second-order derivatives are
given as
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XM
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3. Fundamental equations of bending

In the present study, the foundation is modeled in terms
of Winkler parameter K and shear parameter Gf of the
Pasternak model [25,26]. The governing equations for
bending of Mindlin plates on two-parameter elastic
foundation can be given as [17]
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