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a b s t r a c t

We employ molecular statics simulations to investigate the interactions of circular and hexagonal
1=2h111i prismatic loops in body-centered cubic iron with two parallel f111g free surfaces of a free-
standing foil. If the presence of two surfaces is taken into account, these results agree well with the iso-
tropic elastic solutions of Bastecka (1964) for circular loops and of Groves and Bacon (1970) for square
loops with the Burgers vector of the loop perpendicular to the surface. By varying the size and shape
of the loop, we identify the critical depth at which the image stresses overcome the internal lattice fric-
tion and thus drive the loop towards the surface. We investigate how this depth and the corresponding
critical stress on the dislocation depend on the shape and size of the loop and outline how these results
can be used to correct transmission electron microscope (TEM) measurements of the densities of pris-
matic dislocation loops in thin foils. For example, for the loops of 5 nm in diameter in a 50 nm thick foil,
the loop density corrected for the existence of denuded zones adjacent to the surfaces of the foil is shown
to be nearly 49% higher than that obtained by direct TEM measurements.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Prismatic dislocation loops [1,2] in body-centered cubic (BCC)
metals are under intensive study, which is mainly driven by the
recent European Fusion Development Agreement (EFDA) effort to
find suitable materials for future fusion reactors. TEM observations
of ion irradiated BCC Fe reveal a population of dislocation loops
with Burgers vectors 1=2h111i and h100i [3,4]. Upon irradiating
a thin single-crystalline foil of Fe, h100i loops dominate at temper-
atures higher than about 400 �C [5–7]. Theoretically 1=2h111i
loops are most stable in Fe at temperatures under 350 �C, while
at higher temperatures h100i loops become predominant [8].
However, TEM observations of Fe samples irradiated at room tem-
perature showed mixed 1=2h111i and h100i loop populations,
where the latter dominated the microstructure [4,9]. Although
h100i loops were observed in Fe long time ago [3], there is still
no agreement on the mechanism of their formation at low temper-
atures. In principle, they are formed from individual interstitials or
interstitial clusters, but the underlying process is not well under-
stood. There are several theories how h100i loops can be created
from 1=2h111i loops [10–12], but none of them is widely accepted.
Because the mechanism of the loop escape via the free surface of a

TEM foil is not known, interpretations of experimental observa-
tions are not guaranteed to be quantitatively accurate.

It is worthwhile noting that h100i loops are significantly less
mobile than the 1=2h111i loops [13]. Molecular dynamics (MD)
simulations show that larger interstitial clusters form 1=2h111i
perfect prismatic dislocation loops that are highly mobile (migra-
tion barrier below 0.1 eV) and undergo a rapid one-dimensional
movement on their glide cylinder [14,15]. The high mobility of
1=2h111i loops is the key property that allows for the evolution
of the microstructure under irradiation. Nevertheless, the high
mobility of prismatic loops introduces uncertainties into the esti-
mates of loop densities in irradiated TEM samples, which typically
arise due to neglecting the surface-enhanced mobility of the loops
in thin foils. Since the thicknesses of TEM foils transparent to the
electron beam are typically less than a hundred nanometers, the
prismatic loops are attracted by free surfaces and can easily escape
from the foil owing to low Peierls stresses of edge dislocations in
BCC metals. Only the loops beyond a certain minimum depth from
the surface can thus remain in the sample and be detected by TEM.
For example, in the case of irradiation-induced dislocation loops
with diameters 2–10 nm in Fe at 300 �C, this threshold depth
was estimated to be as large as 20–25 nm [5]. Prokhodtseva et al.
[9,16] made an attempt to quantify the effect of the free surface
by comparing the microstructure of thin TEM foils irradiated
in situ with that of irradiated bulk samples, where the TEM
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lamellae were extracted post-mortem by focused ion beam (FIB).
The quantity and morphology of observed dislocation loops were
found to depend on whether free surfaces were present or absent.
These observations provide ample evidence that the results
obtained on thin TEM foils may not be representative of the bulk
material.

The theoretical derivation of the equilibrium elastic solution of
a circular prismatic loop with its Burgers vector perpendicular to
the free surface of an isotropic semi-infinite medium was made
by Bastecka [1]. While this derivation is directly applicable to
nearly elastically isotropic materials, it is not clear to what extent
it applies to anisotropic materials of which Fe is one of the most
important representatives. A similar derivation was made for
square prismatic loops by Groves and Bacon [2], where only the
forces at the midpoints of the four linear segments of the loop with
the Burgers vector perpendicular to the free surface were consid-
ered. The theoretical formula of Groves for square loops was found
to be applicable also to circular loops in MgO with the Burgers vec-
tor 1=2h110i [17]. No attempt was made so far to investigate how
free surfaces affect the mobility of the prismatic loop and how this
changes for non-circular loops and for the loops not parallel to the
surface. The only exceptions are several computationally expensive
dynamical spectral Fourier transform methods for calculating
image forces on dislocation segments close or even intersecting
the free surface. While these can be used with discrete dislocation
dynamics calculations [18–20], they are not easily applicable to
TEM studies of dislocation loops.

The objective of this paper is to investigate the stresses that
arise due to the interactions of 1=2h111i prismatic loops with free
surfaces. For a range of sizes of circular and hexagonal prismatic
loops, we determine the critical stress exerted on the loop by its
images at which the loop escapes to the free surface. The critical
position of the loop at this instability is used to estimate the thick-
ness of denuded (i.e. loop-free) zones below the two free surfaces.
We demonstrate that the knowledge of the size of these denuded
zones is essential for quantitatively correct predictions of the den-
sities of prismatic dislocation loops. These results can be directly
used to estimate the kinetics of recovery of irradiated free-
standing foils.

2. Theoretical background

Bastecka [1] was the first to derive the force on a circular
prismatic loop positioned in a finite depth below the surface of a
semi-infinite elastic body. The plane of the loop was parallel to
the surface and thus the Burgers vector of the loop was perpendic-
ular to the surface. Solving the equilibrium problem in the
framework of the elasticity theory, Bastecka obtained the force f
that the surface exerts on a unit length of the loop. This force is
perpendicular to the surface (parallel to her x3 axis) and thus
f ¼ f 3Bê3, where ê3 is a unit vector parallel to x3. Accounting for a
missing multiplication by 2/p in Eq. (11) of Bastecka [1], the force
per unit length of the loop can be written as:
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Here, a is the distance (depth) of the loop from the surface, R the
loop radius, d ¼ a=R, b the magnitude of the Burgers vector of the
loop, l the shear modulus, m the Poisson ratio, and E, K the complete
elliptic integrals of the first and second kind, respectively. It is
important to emphasize that Bastecka uses the elliptic integrals

E0ðkÞ and K0ðkÞ, while (1) uses equivalent representations EðMÞ
and KðMÞ, where M ¼ k2 (see [21]).

A similar expression was obtained later by Groves and Bacon [2]
for a square prismatic loop in a half-space terminated by the free
surface perpendicular to the Burgers vector of the loop. Here, only
the forces at the midpoints of the linear loop segments are consid-
ered. The force on the square loop is then given by the formula:

f 3GðaÞ ¼
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Here, c is the edge length of the square loop and m ¼ c2=a2; these
are denoted in [2] as h and y, respectively. From the condition of
equivalence of surfaces of the circular and square loops [22], i.e.
pR2 ¼ c2, and employing the definition of m above, we arrive at

an expression mequiv ¼ p=d2. The corresponding edge length of this
equivalent square loop is cequiv ¼ ða=dÞ ffiffiffiffi

p
p

. It is interesting to note
that (2) with m replaced by mequiv gives forces on the square loop
that are surprisingly similar to those for circular loops of radius R
obtained from (1); this is shown in Table A1.

These derivations can be extended to obtain the force on a pris-
matic dislocation loop located in a foil of thickness h. Since the
force fields represented by (1) and (2) decay rapidly with increas-
ing depth of the loop a, the solution for large h can be obtained as a
direct superposition of the forces obtained from the solutions in
half-space. In particular, we consider a configuration, where the
distance from the loop to the upper surface is a1 and to the lower
surface a2 so that the foil thickness is h ¼ a1 þ a2. The force on the
loop at the position y measured from the middle-plane of the foil
(Fig. 1) due to its image at the position y0 ¼ 2a1 measured from
the position of the loop is f 3ða1Þ and the force exerted on the loop
by the image at y0 ¼ �2a2 is f 3ð�a2Þ ¼ �f 3ða2Þ because f 3 is odd
with respect to a and d and both images have Burgers vectors
�b. Here, f 3 represents any of the two forces in (1) and (2).
Hence, the combined force of the two images acting on the loop

at the position y is f ð0Þ3 ðyÞ ¼ f 3ða1Þ � f 3ða2Þ. The total force exerted

by image forces on the loop is an infinite series of which f ð0Þ3 is
the leading term. The first-order correction can be obtained by con-
sidering the image with the Burgers vector þb at y00 ¼ �2h that is
obtained from the previous image at y0 ¼ 2a1; this exerts the force
on the loop �f 3ðhÞ. The other image is at y00 ¼ 2h and the corre-
sponding force on the loop is f 3ðhÞ. The combined action of these

two forces on the loop is then f ð1Þ3 ðyÞ ¼ f 3ðhÞ � f 3ðhÞ ¼ 0 and thus
the first-order correction does not contribute to the sum. In a sim-
ilar manner, all odd order terms vanish. The second-order term due
to the image dislocation with the Burgers vector �b is

f ð2Þ3 ðyÞ ¼ f 3ðhþ a1Þ � f 3ðhþ a2Þ. The force on the dislocation loop
can thus be represented by an infinite series:

fR3 ðyÞ ¼
X1
k¼0

f ð2kÞ3 ðyÞ ¼
X1
k¼0

f 3ðkhþ a1Þ � f 3ðkhþ a2Þ½ �: ð3Þ

If a1 < a2, i.e. the loop is in the upper half of the foil (y > 0 in Fig. 1),
the term with k ¼ 1, i.e. f 3ðhþ a1Þ � f 3ðhþ a2Þ, is smaller than
f 3ðhþ a1Þ. For the range of foil thicknesses and the largest loop con-
sidered in this paper, the latter represents only about 5 meV in the
interaction energy and 30 Pa in the critical stress. The force on the

loop can thus be safely approximated as f R3 � f 3ða1Þ � f 3ða2Þ.
However, more terms in (3) may need to be used for very thin foils
and/or very large loops, where R is not much smaller than h. In this
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