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a b s t r a c t

In the analysis of maximum sizes of large non-metallic inclusions in steels, the common extreme value
analysis is only based on a sample of largest observations in control areas on polished planes,
respectively. From a simulation study it is observed that this univariate set-up may lead to a high
proportion of misspecifications of the true extreme value distribution. Due to their different tail behavior,
a falsely determined extreme value distribution will lead to erroneous assertions about quantiles, which
serve as characteristic quantities. A multivariate extreme value analysis incorporating data of the r largest
observations in every control area will work satisfactorily and should be preferred. The effects of different
choices of r are also illustrated by means of a real data set of oxide inclusions.

� 2015 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

1. Introduction

Non-metallic inclusions are compound materials of metals (e.g.,
iron, manganese, silicon, aluminum) with non-metals (especially
oxygen and sulfur) embedded inside steel during the manufactur-
ing process.

The source of inclusions can be exogenous (embedding of parti-
cles) when the metal passes through the lining of furnaces, ladles
or casting devices; these inclusions are very rare in modern steels.
Endogenous inclusions are formed by precipitation inside the melt
or the solidified material due to decreasing solubility with falling
temperature. This paper deals with endogenous non-metallic
inclusions.

Very small inclusions with a size of a few nm develop as precip-
itates during solid steel processing. Significant larger inclusions
with sizes of a few lm derive from precipitation during deoxida-
tion and casting. Thus large primary precipitates from the melt,
medium size secondary precipitates from the high temperature
fcc phase of steel and small tertiary precipitates from the low tem-
perature bcc phase can be distinguished. This paper deals with
large size primary inclusions.

By chemical content non-metallic inclusions can be divided into
oxides, sulfides, nitrides and phosphides. The majority of

inclusions in steels are sulfides and oxides. Since the latter are
most harmful for the properties of steels this paper deals with
oxides.

Non-metallic inclusions are a matter of concern with respect to
several properties of steel, such as fatigue, formability, toughness,
machinability and corrosion resistance.

Especially lm scale inclusions are considered as nuclei for pores
and crack initiation and by this being responsible for the damage
development during mechanical testing. It is therefore of prime
importance to develop steels with highest purity; that is freedom
of large non-metallic inclusions and a small homogeneous distri-
bution of the unavoidable rest. The statistical distribution of max-
imum inclusion sizes are relevant for the prediction of the material
behavior especially when cyclic loading is applied or when highest
toughness requirements have to be met. Material’s damage corre-
sponds to its microscopic behavior and is defined as an irreversible
degradation on a given length scale. This length scale varies from a
few microns to a dozen of microns depending on the material,
microstructure and loading conditions (cf. [1]). This paper deals
with inclusions on the lm scale that are considered critical for
cyclic loadings.

The inclusion distribution can be investigated by various metal-
lographic or non-destructive methods like ultra sonic investiga-
tions. By metallographic means the size, shape and arrangement
can be determined quantitatively in the investigated control area
of the sample. This paper deals how experimental input data can
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be evaluated by statistical methods in order to describe the distri-
bution function of maximum particle sizes and to predict the prob-
ability of large diameter inclusions.

2. Experimental materials and methods

2.1. Experimental materials

The experiments have been carried out using the precipitation
hardening ferritic–pearlitic steel 38MnVS6 according to DIN EN
10267 [2]. The chemical composition is provided in Table 1. The
relatively high sulfur content of 0.047 has been added in order
to improve the machinability, the alloying element V is used for
precipitation hardening during cooling from hot-working
temperatures.

The steel has been melted in an Electric Arc Furnace and contin-
uously casted to a billet with the cross section of 240 � 240 mm2

followed by hot rolling to a round bar of diameter of 61 mm.
From these bars samples were taken according to the standard
DIN EN 10247 [3], Fig. 1. The analysis of nonmetallic inclusions
was then performed following the ASTM-standard E2283-08 [4].
To give more details, a number of plane surfaces of size 200 mm2

have been polished. On these polished planes, in total 60 control
areas, each of size 0.76786 mm2, have been chosen.

Commonly, only the largest inclusion is determined in each
control area. In our data set, all inclusions were incorporated hav-
ing a maximum diameter of at least 5 lm; for each inclusion, the
so-called

p
area-parameter has been recorded, which is defined

to be the square root of the projected area of an inclusion (cf. [5,6]).
In our particle analysis, two major inclusion types were differ-

entiated, namely globular oxides and sulfides. Exemplarily, light
optical microscope pictures of these two inclusion types are shown
in Fig. 2.

In our study, we are concerned with oxides, since these inclu-
sions are seen to be more critical regarding fatigue life of compo-
nents. All particles with a ratio of maximum and minimum
diameter smaller than 3 have been considered globular oxides.
This assumption is feasible, as the steel is highly deformed so that
the soft sulfides should be stretched to a larger extend than the
hard oxides. In our data set obtained by the described procedure,
the maximum number of inclusions per control area is given by 81.

2.2. The control area maxima method

In a series of papers Murakami and his co-workers established a
method, frequently termed the control area maxima approach, to
estimate the size of the largest two-dimensional inclusion that
can be found in a certain reference area that is larger than the con-
trol areas used for measuring; see Murakami [5], Murakami et al.
[7] and the references therein. Given the maximum inclusion size
of each control area, Murakami’s work is based on the Gumbel
family of distributions, having distribution functions

exp � exp � x� l
r

� �� �
; x 2 R; ð1Þ

with location parameter l 2 R and scale parameter r > 0. The fit-
ting of a Gumbel distribution (in terms of the maximum likelihood
(ML) principle) to the maximum inclusion sizes of N 2 N control
areas has found entrance in technical recommendations: see ESIS

P11-02 by Anderson et al. [6] and E2283-08 by ASTM
International [4]. Having once numerically determined ML
estimates bl and br of the unknown distribution parameters l 2 R

and r > 0, the p-quantile estimate

bxp ¼ bl � br ln � ln pð Þ

is recommended to be calculated, with p 2 ð0;1Þ, such as p ¼ 0:999
(cf. [4]). As an issue of prediction or rather extrapolation, such a
p-quantile is called the characteristic size of the largest inclusion
with respect to the return period T ¼ 1=ð1� pÞ, being the size that
is expected to be exceeded exactly once in a reference area that is T
times larger than the control areas, or, in other words, being the size
of an inclusion in a polished plane that is expected to be exceeded
by exactly one maximum inclusion in T control areas (see, e.g., [6]).

When considering limit distributions of normalized maxima in
extreme value theory, Gumbel distributions as in (1) as well as two
more families of distributions appear, namely Fréchet and reversed
Weibull families. Thus, the question arises whether it is always
reasonable to restrict to Gumbel distributions, and then to look
for the best fit based on observed control area maxima. E.g., with
estimating quantiles in view, a prefixed, but non-appropriate
choice of the family of extreme value distributions will have seri-
ous consequences in practice (see Sections 3 and 4). The use of a
Gumbel distribution has been frequently reasoned by the argu-
ment that some measurements have shown that the distribution
of inclusion sizes in steels is nearly described by a log-normal,
exponential or Weibull distribution (cf. 6,8,9]), which belong to
the Gumbel domain of attraction, i.e., normalized maxima from
samples from one of the above distributions are theoretically seen
to converge to a Gumbel distribution. Rather than adopting one
predetermined extreme value family, it is more common in applied
statistics (cf. Coles 10,11]) to consider the generalized extreme
value (GEV) family of distributions, with distribution functions

GkðxÞ ¼ exp � 1� k
x� l

r

� �1=k
� �

; 1� k
x� l

r
> 0; ð2Þ

which contains Gumbel (w.r.t. k! 0), Fréchet and reversed Weibull
distributions as particular cases. In addition to a location parameter

Table 1
Chemical composition (weight-%) of the investigated steel (38MnVS6).

Composition (wt.-%)
Steel C Si Mn P S Cr Ni Al Cu N Nb Ti V

38MnVS6 0.39 0.59 1.41 0.016 0.047 0.19 0.08 0.011 0.09 0.01 0.002 0.002 0.10

Fig. 1. Sample preparation from the steel bar according to DIN EN 10247 [3].
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