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Abstract

We find the continuous velocities and pressures at all points of an incompressible viscous fluid flowing in a hollow cylinder from the

given velocities at the points of some closed curves on the inner sides of the cylinder and the given pressures at two points on the inner

sides of the cylinder. This solution can be named the interpolation solution. The solution is reduced to a succession of plane boundary

problems for the elliptic differential equations. The method of solution is programmable and applicable for problems of piping, for

example, for modelling a blood flow in a vessel with a fibrin on its inner surface. This method is illustrated by application to flow in a

hollow circular cylinder with a rotation on the central level.

The interpolation solution is the basis for the method of restoration of continuous velocities and pressures in the flow of an

incompressible viscous fluid from the given velocities at a finite number of points on the inner surface of the cylinder and given pressures

at two points on the same surface.
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1. Introduction

We examine slow stable flow at low Reynolds number
for an incompressible viscous fluid in a hollow cylinder
with some interference on the inner sides of the cylinder
which influence the velocities. An example of such a flow is
blood flow in a vessel with a fibrin on the inner surface.
Given the velocities at the points of nþ 1 closed curves on
the inner side of the cylinder and the pressures at two
points on the inner sides of the cylinder, it should be
possible to find the velocities and pressures at any point
inside the cylinder.

In the paper we obtain the differentiable solution of the
problem. We interpolate the velocities and pressures at
the points of the inner surface of the cylinder and find the
velocities and pressures at the points of the flow.

In Section 2, the coordinates of the desired vector of
velocity and the pressure are supposed to be polynomials
with respect to the coordinate ~z when the generatrix of the

cylinder is parallel to the axis O ~Z. So the coefficients of the
polynomials are the solutions of differential equations.
These coefficients are found in Section 3 successively step
by step beginning with the coefficients with the highest
numbers. The following Section 4 contains the solution for
the case when the velocities are given at three levels on the
inner side of the circular cylinder with inner radius 1 and
the axis of symmetry O ~Z. Section 5 reduces reconstruction
of velocities and pressures for a viscous fluid from
velocities given at a finite number of points on the inner
surface to the method described in the previous sections.
This method is the analogue of the method, presented in

[1,2], where the boundary value problems of the theory of
elasticity have been solved.

2. Formulation of the problem and analysis

Let O be the inner surface of a hollow cylinder in the
XY ~Z space with the generatrix parallel to the axis O ~Z. The
intersection of O with the plane XOY is the closed curve C

which is the boundary of the finite domain D. Consider
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stable slow flow of the incompressible viscous fluid in the
cylinder. Some interference on the inner sides of the
cylinder influences the velocity of the fluid. Let
Cj ; j ¼ 0; . . . ; n, be the closed curves on the surface O
which have the one-to-one projection on C and do not
intersect each other.

Given the velocities at the points of the curves
Cj ; j ¼ 0; 1; . . . ; n, and the pressures at two points
ðx0; y0; ~zjk

Þ, k ¼ 1; 2, of the curves Cjk
, jk ¼ 0; 1; . . . ; n, it

should be possible to restore the velocities and pressures at
any point of the flow.

We denote the components of the velocity by uðx; y; ~zÞ,
vðx; y; ~zÞ, wðx; y; ~zÞ and the pressure by pðx; y; ~zÞ. We
suppose the Reynolds number of the flow to be low so
that we can apply Stokes equations to describe this flow,
together with the incompressibility equation:

qp

qx
¼ mDu;

qp

qy
¼ mDv;

qp

q~z
¼ mDw,

qu

qx
þ

qv

qy
þ

qw

q~z
¼ 0; ðx; yÞ 2 D. ð1Þ

Let the parametric equation of the curves
Cj ; j ¼ 0; 1; . . . ; n, be fxðsÞ; yðsÞ; ~zjðsÞg, the parameter s 2

½0; l� being the arc length of the curve C, x0 ¼ xð0Þ,
y0 ¼ yð0Þ, ~zjk

¼ ~zjk
ð0Þ, k ¼ 1; 2.

We have the following given data:

uðx; y; ~zÞjðx;yÞ2Cj
¼ ~ujðsÞ; vðx; y; ~zÞjðx;yÞ2Cj

¼ ~vjðsÞ,

wðx; y; ~zÞjðx;yÞ2Cj
¼ ~wjðsÞ; s 2 ½0; l�, ð2Þ

pðxð0Þ; yð0Þ; ~zjk
ð0ÞÞ ¼ ~pjk

; k ¼ 1; 2. (3)

We search for the solution in the form

uðx; y; ~zÞ ¼
Xn

k¼0

ukðx; yÞ~z
k; vðx; y; ~zÞ ¼

Xn

k¼0

vkðx; yÞ~z
k,

wðx; y; ~zÞ ¼
Xn

k¼0

wkðx; yÞ~z
k; pðx; y; ~zÞ ¼

Xn

k¼0

pkðx; yÞ~z
k. ð4Þ

We put the velocity in the form of Eqs. (4) into equalities
(2) and obtain the systems with the Vandermonde

determinant which lead to the values

ukðx; yÞjðx;yÞ2C ¼ ûkðsÞ; vkðx; yÞjðx;yÞ2C ¼ v̂kðsÞ,

wkðx; yÞjðx;yÞ2C ¼ ŵkðsÞ; k ¼ 0; 1; . . . ; n. ð5Þ

Now we put the velocity and the pressure in the form of Eqs.
(4) into Eqs. (1) and compare the coefficients with the same
powers of ~z at the right and the left part of each equation. We
have the following equations in the unknown coefficients:

qpk

qx
¼ mDuk þ mðk þ 1Þðk þ 2Þukþ2,

qpk

qy
¼ mDvk þ mðk þ 1Þðk þ 2Þvkþ2,

ðk þ 1Þpkþ1 ¼ mDwk þ mðk þ 1Þðk þ 2Þwkþ2,

quk

qx
þ

qvk

qy
þ ðk þ 1Þwkþ1 ¼ 0 ð6Þ

for each k ¼ 0; 1; . . . ; n, where unþ2 � unþ1 � vnþ2 � vnþ1 �

wnþ2 � wnþ1 � pnþ1 � 0.

3. Finding the coefficients

We solve Eqs. (6) successively beginning with the highest
number k ¼ n.

3.1. Examination of coefficients of ~zn

The third equation in (6) leads to the equality Dwn ¼ 0,
ðx; yÞ 2 D, so we have the Dirichlet problem for the
Laplace equation where the boundary condition is the
third of Eqs. (5). The solution of this problem is
wnðx; yÞ ¼ R rnðzÞ, z ¼ xþ iy, where rðzÞ is the analytic
function in D. The first two of Eqs. (6) with the help of the
fourth equation lead to the system

qpn

qx
þ

q
qy

m
qvn

qx
�

qun

qy

� �� �
¼ 0;

qpn

qy
�

q
qx

m
qvn

qx
�

qun

qy

� �� �
¼ 0;

8>>><
>>>:
which is equivalent to the equation

q
qz

pn þ im
qun

qy
�

qvn

qx

� �� �
¼ 0.

Therefore,

pnðx; yÞ ¼ R hnðzÞ;
qun

qy
�

qvn

qx
¼

1

m
I hnðzÞ; ð7Þ

where hnðzÞ is analytic in D.
Now if we note that

q
qz
ðun þ ivnÞ �

1

2

qun

qx
þ

qvn

qy

� �
þ

i

2

qvn

qx
�

qun

qy

� �
,

we obtain from the fourth equation of (6) and from the
second equation of (7) the following relation:

q
qz
ðun þ ivnÞ ¼ �

1

4m
½hnðzÞ � hnðzÞ�.
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