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a b s t r a c t

The performance of a real-time multibody dynamics simulation using linearized constraint equations is
discussed. It is known that a small step size is required to simulate a systemwith very stiff elements such
as rubber bushes or a system with high frequency phenomena. Calculation time can be reduced by
linearizing constraint equations, and high-speed multibody dynamic analysis with a smaller step size is
realized. It is important to acknowledge the degree of accuracy lost when linearized constraint equations
are used. We compare linearized and non-linearized simulation models using a model of an actual
vehicle and ISO-8608 road profile classifications. Calculation time is evaluated in a real-time analysis
environment, and the accuracy of the simulation result is examined.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multibody dynamics is an effective approach to reduce the cost
and the development time of mechanical products. A typical
application of multibody dynamics in automotive engineering is
the modeling and analysis of suspension systems [1]. Multibody
vehicle models allow precise pre-prototype evaluation of the
effects of suspension geometry and mechanical characteristics of
springs, bushes, and dampers on the handling performance and
ride comfort of a vehicle.

In reports published as early as the 1980s, the use and advan-
tages of real-time analysis of multibody dynamics have been
discussed in several articles [2,3]. Cuadrado et al. [4] addressed
how the modeling process affects the dynamic simulation of
multibody systems and how it could be used to define the
concept of intelligent simulation. With improvements in CPU
performance, the computational speed of multibody dynamics
has been improved, and several real-time multibody dynamics
simulation applications, such as driving simulators and hardware-
in-the-loop simulation (HILS) systems have also proposed [5–8].

However, enhancing the speed of real-time analysis is in strong
demand. It is well known that the compliance effects of rubber
bushes in a suspension subsystem are integral to quality handling
and ride characteristics of an automobile. Due to their high
stiffness, numerical integration analysis of the effects of rubber
bushes requires a very small step size. Therefore, it is difficult to
simulate the effect of rubber bushes in HILS or driving simulator

systems adequately in real-time. Kim proposed a subsystem
synthesis method to enhance the efficiency of real-time analysis,
in which each subsystem was independently analyzed with a
virtual reference body [9]. Kim also proposed a quasi-static
analysis method to consider bush compliance effects for a real-
time multibody vehicle model [10]. Uchida [11] used the theory of
Gröbner bases to triangularize systems modeled with an arbitrary
set of coordinates, which resulted in a system of equations that can
be solved recursively. This theory was applied to the analysis
of a 6-DOF Stewart–Gough platform. In addition, the use of matrix
libraries for real-time analysis is a practical way to enhance
calculation speed [12].

In this paper, the authors propose to apply linearized con-
straint equations to the real-time analysis of a multibody vehicle
model to reduce calculation time. The proposed method is an
approximated analysis method, and the degree of accuracy lost
by the linearization of the constraint equations should be
acknowledged. In this study, vehicle dynamics simulations on 3D
road profiles were conducted using linearized and non-linearized
multibody models, and the accuracy and computational speed
were examined.

2. Multibody system analysis with linearized constraint
equations

2.1. Multibody analysis with relative coordinates

The proposed analysis method with linearization is based on
the fact that, when the equation of motion is described with
relative coordinates, the variation of the Jacobian matrix of the
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constraint equations remains small as long as the relative motion
of each body is small. In this section, details regarding the
derivation of the equation of motion for a constrained system
using relative coordinates are given.

The equation of motion for a multibody system using absolute
Cartesian coordinates can be written as follows [2]:
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whereM is the mass matrix, J′ is the inertia tensor, r is the position
of the centers of gravity of each body, ω′ is the angular velocity of a
body-fixed frame, λ are the Lagrange multipliers, Φr and Φπ′ are
the Jacobian matrices of the constraints, FA and n′A are applied
forces and torques, and γ is the acceleration equation. In the right
side of the equation, ~ω′¼ diag½ ~ω′1 ~ω′2 ⋯ ~ω′n�, and
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In the rigorous dynamic analysis of multibody systems, the
coefficient matrix in the left term must be evaluated for each time
step of the numerical integration. This process requires consider-
able calculation time as the number of bodies increases.

Next, the relative position rn to the body-fixed coordinate of a
body j, which is one of the bodies in the system of interest, is
considered. The equation of motion can be rewritten as
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in which the Jacobian matrices Φrn and Φπn and the acceleration
equation γn are calculated using the relative position rn. In this

equation, FAn is the applied force of each body described in
the body-fixed coordinate of the body j, and can be obtained as
follows:
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where Aj is the direction cosine matrix of the body j. The inertia
force FI should be considered in the equation of motion, which is
composed of centrifugal, Coriolis, and other forces, by using the
translational and rotational acceleration, etc., of the body j as
follows:
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The relative motions between the body j and other bodies can be
considered with Eqs. (3)–(5). Finally, the position rj of the body j in
absolute coordinates is obtained with the following equation:
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In this equation, Fcnj is the constraint force on the body j, which
is a part (submatrix) of the constraint force
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where Φqn ¼ ½ΦrnΦπn �.
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Fig. 1. Multibody dynamics analysis flow charts. (a) Exact multibody dynamic analysis and (b) proposed multibody dynamic analysis.
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