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Abstract—Localization kernels play an important role in the study of hierarchical material systems with well separated length scales. They allow for a
computationally efficient communication of critical information between the constituent length scales. They are particularly well suited for capturing
how an imposed variable (e.g., stress or strain) at the higher length scale is spatially distributed at the lower length scale (i.e., localization linkages). In
recent work, our research group has presented a novel framework called Materials Knowledge Systems (MKS) for the representation and calibration
of the localization kernels, and demonstrated the viability of this approach on selected individual material systems. In this work, we present and
demonstrate an important extension to the MKS framework that allows representation and calibration of the localization kernels for an entire class
of materials (e.g., a selected class of single phase cubic polycrystalline materials).
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Most advanced material systems of interest to emerging
technologies exhibit rich hierarchical internal structures
with well separated length scales. The mechanical response
of such material systems has been addressed rigorously in
prior literature using generalized composite theories
[1–12]. Inherent to these theories is the concept of a
scale-bridging localization tensor that relates the local fields
of interest at the microscale to the macroscale (typically
averaged) fields. For example, the fourth-rank localization
tensor for elastic deformation, a, can be defined to relate
the local elastic strain at any location of interest in the
microstructure to the macroscale strain imposed on the
composite material system as:

eðxÞ ¼ aðxÞheðxÞi ð1Þ

aðxÞ¼ I�Cðx;x0ÞC 0ðx0ÞþCðx;x0ÞC 0ðx0ÞCðx0;x00ÞC 0ðx00Þ� � � �ð Þ
ð2Þ

In Eq. (2), I is the fourth-rank identity tensor, C 0ðxÞ is
the deviation in the local elastic stiffness at spatial location
x with respect to that of a selected reference medium, C is a

symmetrized derivative of the Green’s function defined
using the elastic properties of a selected reference medium
[1,10,13], and h i brackets denote an ensemble average over
a representative volume element (RVE) of the material
microstructure.

Eq. (2) can be transformed into a more computationally
useful form by taking advantage of the concept of spatially
resolved microstructure function mðx; nÞ [14] that reflects
the probability density associated with finding the local
state n (to within an invariant measure dn) at the spatial
location x (note that mðx; nÞdn reflects the corresponding
probability). The local state identifies the specific combina-
tion of local features (including phase identifiers, elemental
compositions, crystal lattice orientations, etc.) needed to
uniquely define the relevant local physical properties at
the spatial location x. Furthermore, the complete set of
all distinct local states that are possible in a given material
system is referred to as the local state space, denoted by H
(i.e., n 2 H ). Introducing this concept, invoking the
ergodic hypothesis, and substituting r ¼ x� x0, one can
recast Eq. (1) as [15,16]:
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mðxþ r þ r0; n0Þdndn0drdr0 � � � �ÞheðxÞi ð3Þ
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The structure of Eq. (3) offers many computational
advantages. First, the terms aðr; nÞ and ~aðr; r0; n; n0Þ are inde-
pendent of the microstructure function. In other words, they
capture the microstructure-independent physics governing
the local elastic response of a composite material. Second,
the terms in Eq. (3) can be efficiently computed using dis-
crete Fourier transforms (DFTs). Consequently, the terms
aðr; nÞ and ~aðr; r0; n; n0Þ are referred to as first-order and
second-order localization kernels (or influence functions),
respectively. Note that Eq. (3) represents an infinite series
expansion of a highly nonlinear function, where each term
of the series captures a linearized contribution from a speci-
fic topological feature in the microstructure.

There have been essentially two main difficulties in the
computation of the localization kernels defined in Eq. (3).
The first difficulty stems from the fact that C(r) (embedded
in the localization kernels; see Eq. (2)) exhibits a singularity
at r ¼ 0. The second difficulty is that the convergence of the
series is quite sensitive to the selection of the reference med-
ium (e.g., [17]). In an effort to overcome these impediments,
our research group has developed a novel data-driven
framework called Materials Knowledge System (MKS)
[18–24]. In the MKS approach, localization kernels are
obtained by a calibration procedure that involves matching
the predictions of Eq. (3) to the corresponding predictions
from previously validated numerical models (e.g., finite ele-
ment models) for a broad range of exemplar microstruc-
tures. The central advantage of the MKS methodology
lies in its computational efficiency. Once the localization
kernels are calibrated, they can be applied to new
microstructures with very little computational cost, often
orders of magnitude lower than what is needed to execute
the previously established numerical model. The viability
and the computational advantages of the MKS approach
have been successfully demonstrated for thermo-elastic
deformation fields in composites [19], rigid-viscoplastic
deformation fields in composites [18], the evolution of the
composition fields in spinodal decomposition of binary
alloys [21], and the elastic deformation fields in
single-phase polycrystalline aggregates [24].

It is noted here that all of the prior case studies in MKS
have utilized a single descriptor of the local state (usually
the phase identifier or the crystal lattice orientation or the
local chemical composition). It is anticipated that most
advanced materials explored in emerging technologies will
demand the use of complex descriptors for the local state.
In this paper, we present a generalized framework that
allows the combined use of multiple descriptors for the
local state. More specifically, building on our earlier work
[9,24–30], we demonstrate the tremendous advantages of
Fourier representations of the localization kernels in arriv-
ing at compact representations that facilitate easy calibra-
tion over extremely large domains of interest (covering a
very broad range of material systems). Since the calibration
process needs to be performed only once, the extended
MKS framework presented here opens a completely new
and practical approach for addressing multiscale hierarchi-
cal modeling and simulations [31–39]. More importantly,
the extensible approach presented here allows
community-wide sharing and curation of the core materials
knowledge through the potential establishment of an
e-library of localization kernels. This is mainly facilitated
by the fact that the localization kernels in the MKS frame-
work are designed to be independent of the microstructure
function.

2. The generalized MKS framework

We seek a computationally efficient form of Eq. (3)
using spectral representations. Specifically, we seek repre-
sentations of the following type for the various functions
in Eq. (3) (only the functions in the first term are shown
below; the representations can be extended in future to
higher-order terms in the series):

mðx; nÞ ¼
X

L

X
s

ML
s QLðnÞvsðxÞ;

aðr; nÞ ¼
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X
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In Eq. (4), QLðnÞ is a suitably selected Fourier basis for
functions defined on the local state space (examples will be
provided later) with the following orthonormal properties:Z

H
QLðnÞQ�L0 ðnÞdn ¼ dLL0

NL
ð5Þ

where the superscript * denotes a complex conjugate, dLL0 is
the Kronecker delta, and NL is a constant that might
depend on L. vs(x) in Eq. (4) defines an indicator basis
which essentially tessellates the spatial domain into a uni-
form grid [14]. This function is defined such that its value
is one for all points belonging to spatial bin s, and zero
for all points outside. The choice of the indicator basis
for the spatial variables in Eq. (4) is primarily motivated
by the fact that it allows for the use of discrete Fourier
transforms (DFTs) in carrying out the integrals in Eq.
(3). Using the orthogonal properties of both bases, we
can show
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where D is the volume of the spatial bin.
Introducing these spectral representations into Eq. (3),

we derive here a generalized form of the MKS:

ps ¼
X

L

X
t

D
N L

AL
t ML

sþt þ
X

L

X
L0

X
t

X
t0

D2

N LNL0
ALL0

t ML
sþtM

L0

sþtþt0 þ � � �
 !

hpi ð7Þ

It is pointed that if the QLðnÞ were selected to be the indi-
cator functions (i.e., a simple binning of the local state
space), we would recover the simpler MKS formulation uti-
lized in our prior studies involving multiphase composites
[18–20,22,39]. Likewise, if the local state was selected to
the crystal lattice orientation and the Fourier basis was
selected to the generalized spherical harmonics (GSHs)
[40], we would recover the MKS formulation we have
recently demonstrated for elastic deformations in single
phase polycrystalline microstructures [24]. We believe that
the formulation presented above is the most general and
practical MKS formulation that will be applicable for a
very broad range of advanced material systems.

The similarity of the generalized MKS formulation pre-
sented here to the versions in our prior work [19–23] sug-
gests the use of the same overall strategy (from our prior
work) for calibrating the influence coefficients (such as
AL

t ) in Eq. (7). The overall workflow involved in building
the MKS databases is shown in Fig. 1 as a broadly usable
template. This procedure involves four different main tasks
(color coded in Fig. 1) with several subtasks. Although this
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