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Abstract—Monte Carlo and cellular automata simulations of grain boundary motion generally suffer from insufficient units of measure. This com-
plicates the comparison of simulations with experiments, the consistent implementation of more than one driving force, and the development of mod-
els with predictive capabilities. This paper derives the proportionality constant relating the voxel interaction strength to a boundary energy, derives a
formula for the boundary curvature, and uses the Turnbull expression to find the boundary velocity. Providing units of measure for the boundary
energy and the boundary curvature allow Monte Carlo simulations and cellular automata simulations, respectively, to be subject to more than one
driving force. Using the Turnbull expression to relate a driving pressure to a boundary velocity allows the remaining quantities in cellular automata
simulations to be endowed with units of measure. The approach in this paper does not require any calibration of parametric links, but assumes that
the voxel interaction strength is a Gaussian function of the distance. The proposed algorithm is implemented in a cellular automata simulation of
curvature-driven grain growth.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Monte Carlo (MC) and cellular automata (CA) simula-
tions comprise a group of computational methods that
have been successfully used to study microstructure evolu-
tion by grain boundary motion [1–4]. Grain boundary
motion is conventionally driven by the reduction of either
the grain boundary energy or the stored strain energy; the
former is usually modeled by curvature-driven boundary
motion, while the latter is usually modeled by normal
motion of the boundaries into the strained material.

MC and CA simulations of grain boundary motion
share several defining characteristics. First, the microstruc-
ture is represented at a length scale above that of atoms and
below that of grains by a set of discretized volume elements
known as voxels. A variety of physical processes [5–8] may
be conveniently modeled by manipulating variables
attached to the voxels, with the representation otherwise
remaining invariant. One consequence of the discretized
representation is an inability to precisely reproduce the
smooth surfaces appearing in physical microstructures.
This leads to the second defining characteristic, namely,
that the grain boundary energy is calculated by a sum of
pairwise voxel interactions rather than by a sum of surface
element contributions. Specifically, a kernel is defined such

that two voxels separated by less than the kernel radius and
belonging to distinct grains contribute to the overall system
energy. This effectively spreads the grain boundary over the
kernel region, and serves to mitigate the consequences of
the discretized interfaces [9–11].

Despite the versatility and prevalence of MC and CA
simulations, several complications generally prevent this
group of methods from quantitatively predicting material
behavior. That is not to say that every MC and CA simu-
lation is subject to all these limitations, or that MC and
CA simulations have not been used to predict certain types
of material behavior. Instead, the assertion is that all the
following points must be satisfactorily resolved before this
group of methods will be suitable for the design of engi-
neering materials. The relevant obstacles include:
1. Arranging the voxels on a regular lattice influences the

evolution of the system [12,13]. This is visible in the form
of faceting of grain boundaries, deviations of the dihe-
dral angles along triples lines, and stagnation of grain
growth. This is a particular concern for material proper-
ties that depend on the grain boundary plane inclination
[4].

2. Simulations often do not adequately reproduce curva-
ture-driven grain boundary motion. The pressure on a
grain boundary may be expressed as a function of the
mean curvature by means of the Young–Laplace equa-
tion [14]. The mean curvature of a discretized interface
is difficult to measure though, particularly when the
kernel radius is small [15,16].
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3. The effective grain boundary energy given by calculating
a sum of pairwise voxel interactions is unclear. While
increasing the kernel radius increases the number of
voxel interactions, the effective grain boundary
energy should remain invariant. This complicates the
implementation of MC simulations with more than
one driving force [17,18].

4. The physical meaning of units of length, time and energy
in simulations is often unspecified. This appears to be
partly due to the ambiguity in calculations of grain
boundary curvature and energy, and partly due to the
use of dynamical relations not relevant to the physical
system. The absence of appropriate units precludes the
meaningful comparison of simulations with experiments.

5. The transition rules governing the change of voxel state
are often not physically justified. Deriving error bounds
on the simulated behavior is difficult when the relation-
ship of the rules to the physical system is not explicit.
Rules selected for historical reasons do not necessarily
generalize to include additional information about the
microstructure.

The author is not aware of any prior literature that conclu-
sively resolves all of these obstacles, despite several encour-
aging attempts [17,19,18]. The research community has
invested considerable effort in this direction though, and
a concise review of some of the relevant approaches is
offered below.

MC models were developed from Ising and Potts models
of ferromagnetic systems used in statistical physics [20].
Initially used to simulate grain growth by Anderson et al.
[1], they have since been used to study a variety of material
behaviors [21,22,7]. MC models may be recognized by hav-
ing a transition rule that is identical to that used for sam-
pling the distribution of states of a microscopic system in
thermodynamic equilibrium [23], and by incrementing time
after applying the transition rule to a single randomly
selected voxel. All energies are expressed in units of kBT ,
where T is the temperature of the canonical ensemble and
is conventionally regarded as an adjustable parameter.
Notice that the transition rule and the temperature do
not have a clear bearing on the physical system being mod-
eled. As a consequence, MC models generally do not
resolve points three, four and five above.

Nonetheless, there are two main motivations for using
this transition rule. First, raising the temperature effectively
reduces all dependence of the grain boundary energy on
boundary plane inclination. This helps to reduce the effect
of the voxel lattice on the evolution of systems with a con-
stant boundary energy [9,24,25], but obscures meaningful
energy variations in systems with an inclination depen-
dence. Second, the probabilistic nature of the transition
rule encourages grain boundary roughening. Interface fluc-
tuations diffuse along the boundaries and result in curva-
ture-driven motion on average [26,27], though roughening
may cause the fragmentation of small grains and compli-
cates the calculation of the boundary plane inclination.

Given the advantages of the MC model, numerous
authors have attempted to provide the simulations with
appropriate units of measure. Raabe [28] and
Nosonovsky et al. [29] assigned units of length and time
by equating the observed boundary velocity with that of
the Turnbull expression, and Zöllner [25] proposed setting
the reduced boundary mobility by adjusting the simulation
temperature. They did not address units of energy though,
or establish the relevance of the Hamiltonian to the energy

of the physical system. Lusk et al. [30,24,18] partially solved
this by equating the effective grain boundary energy with
the free energy of an interface in the Ising model [31].
While this appears to allow all quantities in the MC model
to be assigned units of measure, the parametric links
require extensive calibration, depend on the voxel lattice,
and hold only for high simulation temperatures and low
bulk energy densities.

CA models in computational materials science devel-
oped from studies of self-reproducing Turing automata
and population evolution in mathematics [32].
Hesselbarth et al. [3,33] made the earliest use of CA models
in materials science for several simulations of static recrys-
tallization. This encouraged a relative proliferation of
recrystallization studies [34–37], though the model has been
used for other purposes as well [38,39,8]. CA models seem
to include any simulation that represents the microstructure
by a collection of voxels, that updates the voxel state using
only local information, and that increments time after
applying the transition rule to all voxels. This gives
considerable flexibility to tailor the variables attached to
the voxels and the transition rules to suit the application
at hand. Specifically, modeling the transition rule on a
phenomenological rule derived from experiments effectively
resolves points four and five above.

Part of the historical emphasis on recrystallization stud-
ies is likely due to CA models having difficulty reproducing
curvature-driven grain boundary motion. There is consider-
able historical precedent for the kernel to be smaller than is
suitable for reliable boundary curvature measurements [40],
and the transition rules in CA models do not usually allow
the effect of curvature to be handled by grain boundary
roughening. A related concern is that the boundary plane
inclination is strongly affected by the voxel lattice [4,13].
This effect is more serious for CA models than for MC
models since there is no adjustable parameter to reduce
the grain boundary energy dependence on boundary plane
inclination. As a result, the contribution of the grain
boundary energy is often neglected entirely; this serves as
a reasonable approximation provided there is enough strain
energy to induce static recrystallization.

This situation is not inherent to the CA model though,
and multiple proposals have been made to increase sensitiv-
ity to boundary curvature and reduce lattice anisotropy.
Several authors [38,41,42] interpreted voxels as microscopic
volumes with variable thermal energies, resulting in bound-
ary roughening and curvature-driven boundary motion.
This approach suffers from some of the same difficulties
as the MC models. Lan et al. [43] explicitly calculated the
boundary curvature by a template method and found the
pressure on the boundaries with the Young–Laplace equa-
tion [14]. This allowed grain growth to be simulated, but
the authors state that a more accurate method of measuring
boundary curvature would be useful. Mukhopadhyay et al.
[44] and Marek [12] reduced lattice anisotropy by subdivid-
ing the voxels and allowing partial voxel occupation,
respectively, but do not mention the boundary energy.
Janssens [19] made the dramatic move of distributing the
voxels on a random grid. This not only completely removed
the lattice anisotropy, but enabled simulations of simulta-
neous recrystallization and grain growth. Perhaps only
the increased complexity of the algorithm discouraged this
approach from being more widely adopted.

Finally, Rollett and Raabe [17] published a hybrid algo-
rithm that randomly alternated time steps between an MC
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