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Abstract—We investigate the modifications to the Young–Laplace capillarity equation needed to describe nanoscale gas bubbles embedded in metals,
scale at which the finite width of the interface region cannot be neglected. We focus in particular on the case of He in Fe. Using both, the concept of
Tolman’s length that provides a curvature dependence for the interface energy, and a new equation of state for He at the nanoscale that accounts for
interface effects (see Caro et al., 2013), we derive an expression to predict pressure, and from it density and the amount of He in nanoscale bubbles.
We find that conditions for equilibrium are found for values of pressure or density at variance by a factor of � 2 compared to the traditional way of
using the capillarity equation and a bulk He EOS.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Capillarity, an old concept developed by Young and
Laplace in the early 19th century [1,2], plays an essential
role in many different fields of science and engineering. In
the traditional definition, capillarity is the tendency of wet-
ting liquids to be drawn into the confined space of a narrow
tube. In a wider definition, it includes the phenomenon of
enhanced pressure of a droplet due to the constrictive
surface tension force. The concept in fact involves all
phenomena in which two phases are separated by a curved
interface, and as such it is of interest in biology, geology,
physical chemistry, micro- and nanotechnology, and tri-
bology, and for a diversity of applications such as electro-
spray, nano-fountain pen writing, capillarity bridges, and
in natural sciences to understand certain animal locomo-
tion and plants nutrition; for a review see van Honschoten
et al. [3].

Most of the studies in the literature, as well as the discus-
sion that follows in this Section, consider the problem of
capillarity between fluid phases. When two fluids, in mutual
mechanical equilibrium, are separated by a spherical inter-
face of radius R, the pressure of the fluid inside, pa, differs
from that of the fluid outside, pb. If the interface is assumed
to be of zero thickness, the condition for mechanical equi-
librium provides a simple relation between pa and pb, which
is known as the Kelvin relation [4].

DP ¼ pa � pb ¼ 2c1
R

ð1Þ

where c1 is the surface energy for a flat (R! 1) surface.
This method for treating surface tension is simple and use-
ful but it is of an approximate nature from the molecular
view point, for the structure of the fluid undergoes not a
discontinuous but a progressive modification across the
actual interface. When looking at the micro and nano
scales, the effects of the finite width of the interface. i.e.
the existence of interfacial forces, or the molecular structure
of matter, cannot be neglected and need to be solved explic-
itly; by doing so fundamentally new phenomena appear,
making capillarity at the nanoscale a vivid subject of
research today.

As early as in 1949, based solely on thermodynamic
arguments, Tolman showed that the Kelvin relation could
be not valid for small fluid bubbles. He proved departures
from the equation for the case of one-component two-
phase systems of liquid bubbles in equilibrium with their
vapor [5]. He introduced what is since then known as Tol-
man length d that gives a correction term to the surface
energy, namely:

cR ’ c1= 1þ d
R

� �
ð2Þ

with d in the range of intermolecular distances. Higher
order terms in 1=Rn are to be expected for small radii,
and were discussed in Tolman’s original paper.

A vast literature covers diverse aspects of the problem.
Among them Ono and Kondo, and Rowlinson and Widow
authored a review and a book, respectively on the molecu-
lar theory of capillarity that are classics in the field [6,7]. As
examples of recent work, we mention the contributions by
Marchand et al. [8], and Style et al. [9–12] on the contact
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angle that a liquid drop makes on a soft substrate, which
appears different from that predicted by Neumann’s law
[13], the complex scaling behavior of indentation of soft
surfaces by adhesion forces [10] and the capillarity driven
instabilities in soft solids [14–16].

Using computational modeling at the atomic scale, sev-
eral papers look at details of the interface region and eval-
uate pressures and densities for nanoscale bubbles or drops,
mainly on Lennard-Jonnes model systems [17–24]. Of par-
ticular interest to us is the work by Thompson et al. [25]
who evaluate density profiles and put to test the concept
of Tolman’s length for the surface energy. They report den-
sity and pressure profiles that transition from the liquid to
the vapor phases in a region (the interface) of the order of
the interaction range of the potential, as expected from Tol-
man’s theory.

Despite the abundant literature in this subject, we are
not aware of a similar level of effort to describe gas bubbles
embedded in metals, which are expected to behave in a
similar qualitative way, although with some differences, as
we shall see below, given the fact that the solid containing
the bubble is able to sustain shear. Such bubbles are a rele-
vant microstructure feature in irradiated materials where
noble gases such as He, Xe, and Kr appear as a result of
nuclear reactions. Their presence is usually a nuisance as
they affect mechanical and thermal properties in dramatic
ways [26,27]. Chemically inert, these gases have a exceed-
ingly low solubility in solids and a strong tendency to pre-
cipitate heterogeneously at defects such as dislocations,
grain boundaries or precipitate interfaces.

To our knowledge, there has been no connection
between the studies of nanoscale effects in bubbles, mostly
in the field of colloid physics as briefly reviewed above, and
the field of bubbles embedded in materials under irra-
diation. Support to this conclusion comes from the fact that
the usual treatment of noble gas bubbles in materials, as for
example given in the standard reference book by Was,
‘Fundamentals of Radiation Materials Science’ [28], uses
Eq. (1) in combination with either an ideal gas or a van
der Waals equation of state for the gas, to predict equilib-
rium and kinetic processes.

In this work we seek to establish this connection by
bringing knowledge well established in colloidal physics
to solid state physics and determine scaling effects for
nanoscale He bubbles in Fe, aiming at providing a quanti-
tative evaluation of the departure from the Young–Laplace
Eq. (1) as we enter the nanoscale, and establishing the con-
ditions under which a bubble is said to be in equilibrium
with its environment.

Motivation for our study comes from our recent work
on the structure of these nanoscale bubbles [29]. There we
evaluate the pressure inside a He bubble and show that,
in contrast to the common assumption for macroscale bub-
bles, that pressure (the trace of the stress tensor) is con-
stant, for He bubbles at the nanoscale this picture is no
longer valid. P and density q can no longer be defined as
global quantities related by an equation of state, EOS,
for the fluid, but they become functions of position,
because the bubble develops a core–shell structure originat-
ed in the atomic scale dimensions of the interface, in a simi-
lar way as reported by Thompson for Lennard-Jones fluids
[25]. The range of the metal–gas interaction defines the
width d of the interface, which for the He–Fe system stud-
ied, is d � 0:4 nm, implying that bubbles in the range of
1 nm diameter are almost entirely affected by this interface

effect, creating a radial pressure profile that within a dis-
tance d from the interface, is not constant in the fluid,
nor zero in the metal, as the theory of the Eshelby inclu-
sion, which is valid beyond the interface, would predict [30].

The paper is organized as follows: we first calculate via
direct computer simulations, the pressure, density and
number of particles in equilibrium bubbles. Then we apply
the Tolman’s theory to fit these results with an R-depen-
dent surface energy. We then develop an EOS for nanoscale
bubbles, and finally, we compare our predictions with
results of simulations. A discussion section finalizes the
work.

2. Results

2.1. Equilibrium bubbles and the capillarity equation

A usual way to estimate the amount of gas in a bubble
embedded in a metal is to assume mechanical and thermo-
dynamic equilibrium, i.e., the gas pressure equals the capil-
larity force P ¼ 2c=R, Eq. (1) and the chemical potential for
vacancies far from the bubble and at its surface are equal;
under this condition there is no driving force for vacancies
to be preferentially emitted or absorbed by the bubble. The
amount of gas in the bubble can then be estimated using
Eq. (1) just from its size, the surface energy of the host
matrix, and an EOS for the fluid relating P ; T and density.

The first question we address is a quantification of the
discrepancy between the prediction of Eq. (1) and the result
of an atomic scale calculation of equilibrium bubbles. We
study the case of He in Fe using empirical potentials and
molecular dynamics. For details on the simulations see
Ref. [29]. A bubble in (mechanical) equilibrium is a bubble
containing exactly the amount of gas that produces no per-
turbation to the elastic fields (stress and strain) of the sur-
rounding metal atoms, at a distance larger that the interface
width of � 0:4 nm mentioned above. To find this condition
we use a simulation cell consisting of a spherical Fe crystal
with five concentric shell regions, all but the inner-most
thickness equal to the cut-off of the potential rcut. The
inner-most region is the bubble of varying radius, where
He sits.

The sample is created with the lattice constant of Fe at
the chosen target temperature. It is embedded in vacuum.
Atoms in the outermost shell of this iron ball are frozen
in place. Traveling inward, this shell is followed by another
shell with moving Fe atoms that form a buffer zone between
the frozen atoms and the so called integration zone, the
shell of moving Fe atoms where stress calculations are per-
formed. The integration region is followed by a second buf-
fer region which screens from the interactions with He gas
atoms. The innermost shell contains the He gas in a spheri-
cal cavity.

The precise characterization of the elastic fields in a
spherical domain with frozen boundary conditions can be
found in Ref. [31], but here we are only interested in equi-
librium bubbles, situation where these fields are zero, which
greatly simplifies the analysis. If instead of the gas in the
cavity, we place a perfect crystal of Fe, the pressure and
all the elements of the stress tensor in the integration region
become zero, within numerical accuracy and thermal noise.
Now, placing in the inner zone gas atoms at some varying
densities, the condition of zero pressure in the integration
zone will be obtained for a gas density corresponding to
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