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b Université de Lyon, Insa-Lyon, LAMCOS CNRS UMR 5259, 18-20 rue des Sciences, F-69621 Villeurbanne, France

a r t i c l e i n f o

Available online 28 December 2010

Keywords:

Amorphous polymer

Constitutive equation

Finite elements

Strain localization

Polycarbonate

a b s t r a c t

A three-dimensional formulation of the quasi-point defect theory has been developed and the

corresponding constitutive equations have been implemented in the finite element package Abaqus,

via the writing of an UMAT file. The proposed tool has been completed to support the large strain

description and thus can perform a general structure calculation. Referring to a unique set of parameters

identified in the part I of this paper for glassy amorphous bisphenol-A polycarbonate (PC-BPA),

various commonly used tests were then considered as structural patterns and modeled. The whole

mechanical response as well as localization phenomena measured via video technique is well

predicted by the calculations. These results also highlight the need to consider the spatial dimension

in a sense that the mechanical behavior up to large strain is related to structural modifications, especially

for materials such as amorphous polymers that exhibit yield, softening and hardening intrinsic

phenomena.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Until now, the conception procedure of thermoplastic polymer
components for industrial applications based on finite elements
calculation suffered from the lack of adapted and robust constitu-
tive equations to describe the peculiar mechanical behavior of this
kind of material. Indeed, its complex intrinsic behavior is hardly
reproduced in a wide set of external conditions. Two different types
of models have been developed up to an implementation in a finite
element code in order to describe such behavior.

The first type of models is purely phenomenological. Depending
on the complexity of the proposed equations and of the number
of used parameters, these models can simulate a more or less
large number of experimental conditions, and the assumptions
embedded are related to the effects focused on. For instance,
Lu and Ravi-Chandar [1] consider an elasto-plastic description via a
trilinear model to illustrate the localization phenomena. In many
efforts, elasto-viscoplastic description of amorphous polymers
are developed for FE calculations [2,3]. Finally, authors of Refs.
[4–6] implement a viscoelastic–viscoplastic phenomenological
description in their FE code. In those theories, we can point
out the lack of physical significance and the possible non-

uniqueness of the parameters, even for the most complex and
therefore the most complete models. Those limitations compro-
mise the validity of the equations as soon as the experimental
conditions are enlarged.

The second type of models aims to consider the microstructure of
the polymer (even though phenomenological concepts are included to
a certain extend). Many theories consider two distinct internal
physical contributions to the total resistance to deformation as initially
proposed by Haward and Trackay [7]. The first one is a resistance to
flow based on a microstructural scenario [8–10] that leads to the
prediction of the yield phenomena. In addition to this flow rule, a
network resistance is added, leading to the strain hardening and
allowing the model to account for the large strain behavior. This was
done by making the analogy between the elasticity of a cross-linked
network of flexible chains (rubber) and the hardening of an entangled
network of chains that are (locally) relaxed by virtue of shear yielding
(hardening in an amorphous glass). More or less refinement in the
definition of the active chains, i.e. the number of active polymer
‘‘crosslinks’’ in the strained material has then been considered [11–15].
However, it is noteworthy that most of these models do not propose a
global vision of the whole viscoelastic–viscoplastic behavior of
amorphous polymer, being essentially interested in its viscoplastic
aspect. Recently, Anand and Ames [16] proposed a generalization of
this approach. In his model, a set of Kelvin–Voigt elements accounts for
the inelastic micro-mechanisms and 31 parameters mostly phenom-
enological need to be determined. This illustrates the complexity for
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describing the numerous peculiarities of the mechanical behavior of
amorphous polymers in their glassy state.

Contrary to these approaches, the quasi-point defect (QPD)
theory [17–20] describes the mechanical behavior of amorphous
polymer in the linear as well as non-linear domains. This model is
suited for all the non-crystalline solids at temperatures below and
in the vicinity of the glass transition temperature and has shown its
efficiency to simulate a large set of experimental conditions. In the
present paper, we will briefly recall the main equations of the
physical-based model. A complete justification of the following set
of equations can be found in the companion paper [21]. These
equations are then introduced in a 3D formalism and implemented
in the FE code Abaqus [22]. Finally, finite elements simulations of
different types of mechanical tests are performed to illustrate the
efficiency of this new tool. Because typical glassy behavior exhibit-
ing yield, softening and hardening is known to favor strain
localization and/or stabilization (see [2,11,23,24] and reference
herein); the validation will be performed with the comparison
between experimental data and calculation at both global and local
levels.

2. Constitutive equations

The constitutive equations of amorphous polymers are derived
from the QPD theory [20] and are presented in details and for the
first time in the Part I of this paper. Based on a microstructural
scenario, this model provides the kinetic equation for the non-
elastic shear strain rate of thermoplastic polymer under a thermo-
mechanical stimulus. The non-elastic deformation is described
through localized and correlated microstructural movements,
as widely acknowledged in the literature [25–28]. Moreover,
a reversible (so-called anelastic) and a permanent component
(viscoplastic) can be dissociated. The distributed characteristic
times, associated to the anelastic part, correspond to those involved
in the b and low temperature part of the a relaxations observed in
DMA experiments (depicted b and an, respectively). The distrib-
uted viscoplastic characteristic times (vp) are those responsible
for the upper part of the a relaxation. Finally, three populations
of characteristic times lead to the general formulation of the non-
elastic shear strain rate _gnel

_gnelðtÞ ¼
X

n

_gnðtÞ ¼
X

n
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where the i subscript corresponds to the ith distributed element of
the nth contribution and the n subscript corresponds to the process
involved, either the b, an or vp one. The equilibrium shear strain of
each process is defined by a limited strain value 1giðtÞ

n . It is function
of the activation shear stress sa and the compliance increase DJn

associated to the corresponding relaxation process

1gi
n ðtÞ ¼Wi

nDJnsaðtÞ ð2Þ

The distribution weights Wi
n as well as the associated relaxation

times ti
n are defined in Appendix A1.

The microstructural state is taken into account through a so-
called correlation parameter w that is introduced in the equation
defining the relaxation times. Moreover, this parameter depends on
the temperature (Eq. (3)) and evolves with the non-elastic defor-
mation (Eq. (4))

wðTÞ ¼ wðTgÞ ToTg

wðTÞ ¼ wðTgÞþAwðT�TgÞ T4Tg
ð3Þ

wðT,eÞ ¼ wðTÞþAanðganÞ�Avpgvp ð4Þ

The different parameters Aw, Aan and Avp are given in Table 1.

This model makes a strong link between the viscoelastic
behavior of the material, characterized by DMA and the mechanical
finite deformation behavior generally characterized by classical
mechanical tests (tensile, compression and shear tests). Finally,
with the set of constitutive equations recalled above and in the
Appendix A1, the QPD model gives a global description of an
amorphous polymer from the linear to the non-linear range with
account for temperature, loading conditions and strain rate or
pulsation. Its validation in simple uniaxial stress states (assumed
homogeneous) has shown its limitation (see part I) when localiza-
tion phenomenon becomes important. Its 3D generalization
and calculations accounting for the spatial dimensions are then
needed.

3. 3D generalization

3.1. Constitutive equations

The general three-dimensional problem involves large trans-
formations including large deformations and large rotations. In
such conditions, the kinematics formulation is based on the
Kroner–Lee multiplicative decomposition [29,30] of the

Table 1
Parameters of the QPD model.

Parameters Values Units Definition

Linear behavior (DMA tests)

Secondary relaxation

Gb_u 1296 MPa Storage shear modulus before

the b relaxation (¼1/Jel)

Gb_r 648 MPa Relaxed shear storage modulus

of the b relaxation (¼Ga_u)

Ub 0.8 eV Activation energy of the b
relaxation

sb0 10�21 s Pre-exponential factor of the b
relaxation

Bb 0.1 Distribution parameter

Main relaxation

DGan 213.3 MPa Intensity of the anelastic

process (¼1/DJan)

Ga_r 1.8 MPa Relaxed shear storage modulus

of the b relaxation

t0 5�10�21 s Time scale parameter related to

the shift between the two main

relaxations

v 0.3 Disorder parameter

v0 0.95 Distribution parameter of the

viscoplasticity

Av 0.0065 Temperature contribution to

the disordered state (up to Tg)

Non-linear behavior (finite strain tests)

r0 185 MPa Yield stress to overcome the

energy barrier for

conformational change at 0 K

Aan 0.9 Anelastic contribution to the

disordered state (related to the

softening)

Avp 0.1 Viscoplastic contribution to the

disordered state (related to the

plateau value)

X 0.001 MPa�1 Pressure dependence

Limited extensibility criterion
eeq 0.55 Equivalent limited strain

‘‘hardening modulus’’ 400 MPa Elastic constant for the elastic

behavior assumed once the

limited strain has been reached

Note that DJvp¼(1/Ga_r�1/Ga_u)�DJan and DJb¼(1/Gb_r�1/Gb_u).
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