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a b s t r a c t

A magnetic hydrodynamic (MHD) mixed convective heat transfer problem of a second-grade

viscoelastic fluid past a wedge with porous suction or injection has been studied. Governing equations

include continuity equation, momentum equation and energy equation of the fluid. It has been analyzed

by a combination of a series expansion method, the similarity transformation and a second-order

accurate finite-difference method. Solutions of wedge flow on the wedge surface have been obtained by

a generalized Falkner–Skan flow derivation. Some important parameters have been discussed by this

study, which include the Prandtl number (Pr), the elastic number (E), the free convection parameter (G)

and the magnetic parameter (M), the porous suction and injection parameter (C) and the wedge shape

factor (b). Results indicated that elastic effect (E) in the flow could increase the local heat transfer

coefficient and enhance the heat transfer of a wedge. In addition, similar to the results from Newtonian

fluid flow and conduction analysis of a wedge, better heat transfer is obtained with a larger G and Pr.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of the flow field in a boundary layer adjacent to
the wedge is very important in the present problem, and is an
essential part in the area of fluid dynamics and heat transfer.
Especially, understanding boundary layer flows and heat transfer
of non-Newtonian fluids has become important recently [1].
Srivatsava [2] and Rajeswari and Rathna [3] studied non-New-
tonian fluid flow near a stagnation point. Mishra and Panda [4]
analyzed the behavior of second-grade viscoelastic fluids under
the influence of a sidewall injection in an entrance region of a pipe
flow. Rajagopal et al. [5] studied a Falkner–Skan flow field of a
second-grade viscoelastic fluid. Massoudi and Ramezan [6]
studied a wedge flow with suction and injection along the walls
of a wedge by the similarity method and finite-difference
calculations. Hsu et al. [7] also studied the flow and heat transfer
phenomena of an incompressible second-grade viscoelastic fluid
past a wedge with suction or injection. An excellent review of
boundary layers in non-linear fluids was recently written by
Rajagopal [8]. These are related studies to the present investiga-
tion about second-grade viscoelastic fluids. The system to be
analyzed in the present study is a wedge in a second-grade
viscoelastic fluid flow. Due to the coupling nature between
the wedge and the fluid, the present analysis is different from
previous researches concerning mixed convection about a wedge.

Those studies have dealt primarily with a plate having prescribed
convective heat transfer coefficient that yield similar or non-
similar solutions [9–11]. Recently, there are some related studies
[13–16] on wedge flow for micropolar fluid, viscoelastic fluid,
non-Darcy mixed convection, and compressible turbulent bound-
ary layer and unsteady mixed convection flow. And also, the
related MHD and viscoelastic fluids flow are studied by Aliakbar
et al. [17] for the influence of thermal radiation on MHD flow of
Maxwellian fluids above stretching sheets. Abel et al. [18–20]
studied viscoelastic MHD flow and heat transfer over a stretching
sheet with viscous and ohmic dissipations, with variable thermal
conductivity, non-uniform heat source and radiation and with
non-uniform heat source/sink. Salem [22] studied variable
viscosity and thermal conductivity effects on MHD flow and heat
transfer in viscoelastic fluid over a stretching sheet. Cortell [23]
studied the effects of viscous dissipation and work done by
deformation on MHD flow and heat transfer of a viscoelastic fluid
over a stretching sheet.

The objective of the present analysis is to study the MHD
mixed convection of a wedge cooled or heated by a high or low
Prandtl number, second-grade viscoelastic fluid with various
parameters, such as Prandtl number (Pr), the elastic number (E),
the free convection parameter (G) and the magnetic parameter
(M), the porous suction and injection parameter (C) and the
wedge shape factor (b). An extension of previous works was then
performed to investigate numerical calculation MHD mixed
convection for viscoelastic fluid past a wedge with porous suction
or injection. A schematic diagram of the wedge is shown in Fig. 1
to illustrate the physical situation and symbols of parameters
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needed for the analysis. The Rivlin–Ericksen model for grade-two
fluids is used in the momentum equations. This work studied the
effects of dimensionless parameters, the Prandtl number ðPrÞ,
the elastic number (E), the free convection parameter (G) and the
magnetic parameter (M). Flow and temperature fields of wedge
flow have been analyzed by utilizing the boundary layer concept
to obtain a set of coupled momentum equations and energy
equations. A similar transformation with wedge-type parameters
and a series expansion method are then used to convert the non-
linear, coupled partial differential equations to a set of non-linear,
decoupled ordinary differential equations. In the present problem,
these decoupled equations are then solved iteratively to obtain
the dimensionless velocity and dimensionless temperature
distribution along the wedge boundary layer by a second-order
finite difference method.

2. Theory and analysis

The Rivlin–Ericksen model [24] for a homogeneous, non-
Newtonian, second-grade viscoelastic fluid has been used in the
present wedge flow. It is important to discuss that the coefficients
that characterize the fluid have to satisfy certain restrictions, see
Dunn and Rajagopal [25]. In the study, they establish several new
results concerning the thermodynamics of these materials. A
special application of their results reveals that the work of Joseph
[26,27] and Renardy [28] on the instability of the rest state for
certain, very special grade n fluids is in fact inapplicable to all
those grade n fluids that are consistent with thermodynamics. The
model equation is expressed as follows:

T¼�PIþmA1þa1A2þa2A2
1 ð1Þ

where P is pressure, I the unit vector, m is dynamic viscosity,
and a1 and a2 are first and second normal stress coefficients that
related to the material modulus. The kinematic tensors A1 and A2

are defined as

A1 ¼ gradVþðgradVÞT ð2Þ

A2 ¼
d

dt
A1þA1ðgradVÞþðgradVÞTA1 ð3Þ

The model equation (1) is called a second order fluid model if it
is not required to be compatible with thermodynamics [30,34].
The sign of the coefficient a1 has been a subject of much
controversy. Dunn and Fosdick [29] demonstrated that a second
grade fluid exhibits acceptable stability characteristics. Later,
Fosdick and Rajagopal [31] showed that the fluid exhibited
anomalous behavior not to be expected of any fluid of rheological
interest if a1o0 and a1+a2a0. It is very important that solutions
to steady flow problems can be found when a1o0. However, all
these flows are not stable [25]. Several such solutions correspond
to the case a1o0 presented in the recent book of Truesdell and
Rajagopal [32]. As a result, in any event, the results established for
the case a140 have more value than the solution for a1o0. In
this study, we shall assume that the model under consideration
meets mZ0, a1Z0, a1+a1¼0 and is compatible with the present
literature, where V is velocity and d/dt is the material time
derivative. As done by Rajagopal [33], the present researchers
substituted Eq. (1) into momentum equations

r d

dt
V¼ divTþrb ð4Þ

where r is the density of the fluid, and assumed that the fluid is
incompressible and the flow is in isochoric motion to obtain

DivV¼ 0 ð5Þ

For the steady, two-dimensional laminar flow under conser-
vative body force b, the following were defined:

P*¼ P� 2a1þ
a2

2

� � @u

@y

� �2

þrF ð6Þ

b¼rF ð7Þ

where P, Pn is pressure and F is potential function. From
Bernoulli’s principle and the substitution of the edge velocity ue,
the following equation is obtained:

ue
@ue

@w
¼�

1

r
@P*

@w
ð8Þ

In Eq. (10), use the Oberbeck–Boussinesq approximation. This
has not been rigorously justified even in the case of the classical
Navier–Stokes fluid and definitely not in the case of the
second grade fluid. In 1996 Rajagopal, Ruzicka and Srinivasa
provided a justification for the approximation within the full
thermodynamical theory for Navier–Stokes fluids [34]. We follow
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Fig. 1. A schematic diagram for the MHD mixed convection of viscoelastic fluid

past a wedge with porous suction or injection.
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